Encrypted Traffic Identification Method Based on Multi-scale Spatiotemporal Feature Fusion Model with Attention Mechanism

2021 ◽  
pp. 857-866
Author(s):  
Yonghua Huo ◽  
Hongwu Ge ◽  
Libin Jiao ◽  
Bowen Gao ◽  
Yang Yang
Author(s):  
Zhenjian Yang ◽  
Jiamei Shang ◽  
Zhongwei Zhang ◽  
Yan Zhang ◽  
Shudong Liu

Traditional image dehazing algorithms based on prior knowledge and deep learning rely on the atmospheric scattering model and are easy to cause color distortion and incomplete dehazing. To solve these problems, an end-to-end image dehazing algorithm based on residual attention mechanism is proposed in this paper. The network includes four modules: encoder, multi-scale feature extraction, feature fusion and decoder. The encoder module encodes the input haze image into feature map, which is convenient for subsequent feature extraction and reduces memory consumption; the multi-scale feature extraction module includes residual smoothed dilated convolution module, residual block and efficient channel attention, which can expand the receptive field and extract different scale features by filtering and weighting; the feature fusion module with efficient channel attention adjusts the channel weight dynamically, acquires rich context information and suppresses redundant information so as to enhance the ability to extract haze density image of the network; finally, the encoder module maps the fused feature nonlinearly to obtain the haze density image and then restores the haze free image. The qualitative and quantitative tests based on SOTS test set and natural haze images show good objective and subjective evaluation results. This algorithm improves the problems of color distortion and incomplete dehazing effectively.


2021 ◽  
Vol 25 (6) ◽  
pp. 1603-1627
Author(s):  
Xiao Yao ◽  
Zhengyan Sheng ◽  
Min Gu ◽  
Haibin Wang ◽  
Ning Xu ◽  
...  

In order to improve the robustness of speech recognition systems, this study attempts to classify stressed speech caused by the psychological stress under multitasking workloads. Due to the transient nature and ambiguity of stressed speech, the stress characteristics is not represented in all the segments in stressed speech as labeled. In this paper, we propose a multi-feature fusion model based on the attention mechanism to measure the importance of segments for stress classification. Through the attention mechanism, each speech frame is weighted to reflect the different correlations to the actual stressed state, and the multi-channel fusion of features characterizing the stressed speech to classify the speech under stress. The proposed model further adopts SpecAugment in view of the feature spectrum for data augment to resolve small sample sizes problem among stressed speech. During the experiment, we compared the proposed model with traditional methods on CASIA Chinese emotion corpus and Fujitsu stressed speech corpus, and results show that the proposed model has better performance in speaker-independent stress classification. Transfer learning is also performed for speaker-dependent classification for stressed speech, and the performance is improved. The attention mechanism shows the advantage for continuous speech under stress in authentic context comparing with traditional methods.


Author(s):  
Dipali Vasant Atkale ◽  
Meenakshi M. Pawar ◽  
Shabdali C. Deshpande ◽  
Dhanashree M. Yadav

2019 ◽  
Vol 11 (11) ◽  
pp. 237
Author(s):  
Jingren Zhang ◽  
Fang’ai Liu ◽  
Weizhi Xu ◽  
Hui Yu

Convolutional neural networks (CNN) and long short-term memory (LSTM) have gained wide recognition in the field of natural language processing. However, due to the pre- and post-dependence of natural language structure, relying solely on CNN to implement text categorization will ignore the contextual meaning of words and bidirectional long short-term memory (BiLSTM). The feature fusion model is divided into a multiple attention (MATT) CNN model and a bi-directional gated recurrent unit (BiGRU) model. The CNN model inputs the word vector (word vector attention, part of speech attention, position attention) that has been labeled by the attention mechanism into our multi-attention mechanism CNN model. Obtaining the influence intensity of the target keyword on the sentiment polarity of the sentence, and forming the first dimension of the sentiment classification, the BiGRU model replaces the original BiLSTM and extracts the global semantic features of the sentence level to form the second dimension of sentiment classification. Then, using PCA to reduce the dimension of the two-dimensional fusion vector, we finally obtain a classification result combining two dimensions of keywords and sentences. The experimental results show that the proposed MATT-CNN+BiGRU fusion model has 5.94% and 11.01% higher classification accuracy on the MRD and SemEval2016 datasets, respectively, than the mainstream CNN+BiLSTM method.


Author(s):  
Zhiqiang Hao ◽  
Zhigang Wang ◽  
Dongxu Bai ◽  
Bo Tao ◽  
Xiliang Tong ◽  
...  

The intelligent monitoring and diagnosis of steel defects plays an important role in improving steel quality, production efficiency, and associated smart manufacturing. The application of the bio-inspired algorithms to mechanical engineering problems is of great significance. The split attention network is an improvement of the residual network, and it is an improvement of the visual attention mechanism in the bionic algorithm. In this paper, based on the feature pyramid network and split attention network, the network is improved and optimised in terms of data enhancement, multi-scale feature fusion and network structure optimisation. The DF-ResNeSt50 network model is proposed, which introduces a simple modularized split attention block, which can improve the attention mechanism of cross-feature graph groups. Finally, experimental validation proves that the proposed network model has good performance and application prospects in the intelligent detection of steel defects.


Sign in / Sign up

Export Citation Format

Share Document