density image
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Sankhajit Saha ◽  
Prajit Chakrabarti ◽  
Johannes Vossen ◽  
Sourav Mitra ◽  
Tuhin Podder

Abstract This paper discusses the Integrated Role of Geomechanics and Drilling Fluids Design for drilling a well oriented towards the minimum horizontal stress direction in a depleted, yet highly stressed and complex clastic reservoir. There are multiple challenges related to such a well that need to be addressed during the planning phase. In this case, the well needs to be drilled towards the minimum horizontal stress direction (Shmin) to benefit multi-stage hydraulic fracturing. At the same time, the most prominent challenge is that this well orientation is more prone to wellbore failure and requires a maximum mud weight, due to the present strike slip stress environment. Well planning challenges in such an environment include (a) the determination of formation characteristics and rock properties, (b) the anticipation of higher formation collapse pressure during the course of drilling the lateral section within the reservoir, (c) the determination of the upper bound mud weight to prevent lost circulation due to a low fracture gradient against depleted sections, or due to the presence of pre-existing natural fractures, d) mitigating the higher risk of differential sticking against depleted porous layers, and determining appropriate bridging in the drilling fluids, (e) recognizing the prolonged exposure time of the formation due to the length of the lateral and the lower rate of penetration against the tight highly dense formations. For successful drilling, and to mitigate the above risks, the first step is to prepare a predrill GeoMechanical model along with adequate fluid design and drillers action plans to be considered during drilling. Offset well petrophysical logs and core data are considered for the preparation of the predrill GeoMechanical model, along with the drilling experiences in the offset locations. Based on the above, a predrill GeoMechanical model is prepared, a risk matrix is being established, and a representative mud weight window is recommended (Wellbore Stability Analysis). In most cases, the offset well locations considered are vertical- or inclined-, or lateral wells of different trajectory azimuth than the target well location and the predrill GeoMechanical model can incorporate such variations easily; however, any Geology uncertainty, leading to a different rock property- and stress set-up (or even different pore pressure than expected), at the actual well location will be part of the uncertainty of the predrill GeoMechanical model and Wellbore Stability Analysis. This is where the real time monitoring is playing out its full potential: giving an updated model and wellbore stability analysis during drilling. While drilling the lateral section, the wellbore condition is being monitored using LWD (logging while drilling) tools, e.g. Gamma Ray, Density, Neutron, Acoustic Caliper, Azimuthal density image and ECD (equivalent circulating density). While gamma ray helps in determining the lithology, density logs help to understand the formation hardness, and they can be used to generate a calibrated pseudo acoustic log. Based on this pseudo acoustic log, the rock strength and other rock mechanical properties of the pre- GeoMechanical model can be updated as soon as they become available. This gives insight into the model differences and helps to understand model variations and adjust Wellbore Stability recommendations accordingly. While the neutron log helps to determine the zones of high porosity, and thus potential risk zones for differential sticking, the azimuthal density image clearly indicates the breakout zones caused by the shear failure of the wellbore. The presence of wellbore failure (breakout) is further confirmed by acoustic caliper data, and accordingly wellbore stability related recommendations are communicated to the operator, for an increase in the specific gravity of the mud, and thus, to balance the wellbore. From a mud rheology perspective, high performance OBM (oil-based mud) parameters are maintained consistent with the formation properties, to minimize fluid loss, optimize wellbore strengthening characteristics and minimize at the same time solids concentrations in order to avoid excessive ECD (equivalent circulating density) which may open pre-existing natural fractures resulting in downhole losses and in consequence might lead to differential sticking. In the case study presented herein, the proactive implementation of GeoMechanics and its Wellbore Stability application as well as the integration of drilling fluids services, resulted in the smooth and successful drilling of the lateral section, and also in the delivery of an in gauge hole necessary for multi-stage fracturing (MSF) completion optimization.


2021 ◽  
Author(s):  
Oksana Vasilievna Kokareva ◽  
Yana Andreevna Miryasova ◽  
Tamara Aleksandrovna Alekseeva

Abstract With the advent of the equipment for full well logging suite in the horizontal wells, it became possible to evaluate the reservoir's quantitative parameters. However, the original curves are mainly used for this purpose, which leads to significant errors, in particular due to the significant influence of nearby reservoirs on the tools readings in the penetrated deposits. There is a need to discuss the current issues of interpretation in directional, horizontal and multi-lateral wells with the experts. 3DP module in the downhole software platform* allows to evaluate the overall influence of geometric effects, as well as to adjust logging curves for the influence of several reservoirs on the logging tools responses, which are not still taken into account by conventional methods when processing. The modeled density image is especially useful for confirming the model geometry, updating the local dip angle, and identifying areas, where additional features, such as thin layers, are to be added. The accounting for density and neutron porosity for layers in the petrophysical analysis increases the efficiency of calculating clay volume and porosity, which affects the saturation. The authors also proposed a methodology for assessing share of sand component based on RHOB image. Further accounting of NTG, for the correct assessment of the reservoir properties in a heterogeneous reservoir, followed by the data accounting in the geological model. The results obtained in the course of the work allowed to apply the spatial interpretation of horizontal well in geological modeling, as well as to improve the interpretation algorithm.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1841
Author(s):  
Kyungsoo Bae ◽  
Kyung-Nyeo Jeon

Dual-energy computed tomography (CT) is a promising tool, providing both anatomical information and material properties. Using spectral information such as iodine mapping and virtual monoenergetic reconstruction, dual-energy CT showed added value over pulmonary CT angiography in the diagnosis of pulmonary embolism. However, the role of non-contrast-enhanced dual energy CT in pulmonary embolism has never been reported. Here, we report a case of acute pulmonary embolism detected on an electron density image from an unenhanced dual-energy CT using a dual-layer detector system.


2021 ◽  
Vol 13 (17) ◽  
pp. 3417
Author(s):  
Yibo He ◽  
Zhenqi Hu ◽  
Kan Wu ◽  
Rui Wang

Repairing point cloud holes has become an important problem in the research of 3D laser point cloud data, which ensures the integrity and improves the precision of point cloud data. However, for the point cloud data with non-characteristic holes, the boundary data of point cloud holes cannot be used for repairing. Therefore, this paper introduces photogrammetry technology and analyzes the density of the image point cloud data with the highest precision. The 3D laser point cloud data are first formed into hole data with sharp features. The image data are calculated into six density image point cloud data. Next, the barycenterization Bursa model is used to fine-register the two types of data and to delete the overlapping regions. Then, the cross-section is used to evaluate the precision of the combined point cloud data to get the optimal density. A three-dimensional model is constructed for this data and the original point cloud data, respectively and the surface area method and the deviation method are used to compare them. The experimental results show that the ratio of the areas is less than 0.5%, and the maximum standard deviation is 0.0036 m and the minimum is 0.0015 m.


Author(s):  
Zhenjian Yang ◽  
Jiamei Shang ◽  
Zhongwei Zhang ◽  
Yan Zhang ◽  
Shudong Liu

Traditional image dehazing algorithms based on prior knowledge and deep learning rely on the atmospheric scattering model and are easy to cause color distortion and incomplete dehazing. To solve these problems, an end-to-end image dehazing algorithm based on residual attention mechanism is proposed in this paper. The network includes four modules: encoder, multi-scale feature extraction, feature fusion and decoder. The encoder module encodes the input haze image into feature map, which is convenient for subsequent feature extraction and reduces memory consumption; the multi-scale feature extraction module includes residual smoothed dilated convolution module, residual block and efficient channel attention, which can expand the receptive field and extract different scale features by filtering and weighting; the feature fusion module with efficient channel attention adjusts the channel weight dynamically, acquires rich context information and suppresses redundant information so as to enhance the ability to extract haze density image of the network; finally, the encoder module maps the fused feature nonlinearly to obtain the haze density image and then restores the haze free image. The qualitative and quantitative tests based on SOTS test set and natural haze images show good objective and subjective evaluation results. This algorithm improves the problems of color distortion and incomplete dehazing effectively.


Author(s):  
Ebrahim Bagheri ◽  
Sayed Mohammad Marandi ◽  
Nazem Ghasemi ◽  
Zeinab Rezaee

Background: Multiple Sclerosis is a myelin destroyer disease, which physical activity can be effective in improving it. Therefore, in the present study, the effect of swimming on oligodendrocytic cells and myelin tissue in rat brain of the Cuprizone model of MS disease is investigated. Methods: In this study, 21 male Wistar rats were randomly divided into Control groups, Cuprizone and Swim + Cuprizone. For the induction of MS, Cuprizone 0.6% were gavaged for one month. The group of Swim + Cuprizone swam at the same time with gavage. The training program included 4 weeks of swimming for 5 sessions per week and 30 minutes. Immunohistochemistry technique was used to determine the percentage of immature and mature oligodendrocytes and Luxol fast blue solution for evaluation of myelin density. Image j software and One-way ANOVA was used to analyze the findings. Results: The mean percentage of immature and mature oligodendrocytes and myelin density in the Swim+Cuprizone group was significantly higher than that of the Cuprizone group (p≤0.05). Conclusion: Swimming decreases destruction of the oligodendrocytes and myelin cells due to Cuprizone.


2021 ◽  
Vol 41 (8) ◽  
pp. 0823010
Author(s):  
陈沁 Chen Qin ◽  
文龙 Wen Long ◽  
杨先光 Yang Xianguang ◽  
李宝军 Li Baojun

Sign in / Sign up

Export Citation Format

Share Document