Intelligent Vehicle Module Using Image Processing

Author(s):  
Varsha Kshirsagar Deshpande ◽  
Sheel Shah ◽  
Raghavendra Bhalerao
2012 ◽  
Vol 24 (1) ◽  
pp. 219-225 ◽  
Author(s):  
Bo Sun ◽  
◽  
Michitaka Kameyama

Highly safe intelligent vehicles can significantly reduce vehicle accidents by warning drivers of dangerous situations. Trajectory estimation of target vehicles is expected to be used in highly safe intelligent vehicles. Trajectory estimation requires that we estimate driver intent not detectable by sensors. The Bayesian Network (BN) building we propose for trajectory estimation related to driver intent defines driver intent hierarchically to simplify the BN as much as possible. Causal driver-intent relationships are discussed reflecting real-world motion. This raises the quality of driver-intent estimation and increasing inference performance. Experimental learning based on 2D image processing is presented to acquire probabilistic BN parameters.


2011 ◽  
Vol 201-203 ◽  
pp. 2007-2013 ◽  
Author(s):  
Wen Dong Li ◽  
Guo Wei Chen ◽  
Jing Chen ◽  
Xue Jun Zhang

This paper describes a new intelligent storehouse management vehicle system based on image processing and Radio Frequency Identification (RFID) technologies to ensure the security of storehouses of logistics enterprises and improve the efficiency of storage. The vehicle is able to go ahead automatically by visual navigation in storehouses with the function of face recognition and alarm, as well as automatic statistics of commodities. Hough transformation is used to detect straight lines for angle control, and RFID based component is applied to the commodity management. The results show that our vehicle and storehouse management system can successfully fulfill various tasks with high accuracy of performance, which will lead to a practical merchandise application after further improvements.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
M.A. O'Keefe ◽  
W.O. Saxton

A recent paper by Kirkland on nonlinear electron image processing, referring to a relatively new textbook, highlights the persistence in the literature of calculations based on incomplete and/or incorrect models of electron imageing, notwithstanding the various papers which have recently pointed out the correct forms of the appropriate equations. Since at least part of the problem can be traced to underlying assumptions about the illumination coherence conditions, we attempt to clarify both the assumptions and the corresponding equations in this paper, illustrating the effects of an incorrect theory by means of images calculated in different ways.The first point to be made clear concerning the illumination coherence conditions is that (except for very thin specimens) it is insufficient simply to know the source profiles present, i.e. the ranges of different directions and energies (focus levels) present in the source; we must also know in general whether the various illumination components are coherent or incoherent with respect to one another.


Sign in / Sign up

Export Citation Format

Share Document