Photochemical and Electrochemical Hydrogenation of π-Conjugated Bridging Ligands on Photofunctional Multinuclear Complexes

2021 ◽  
pp. 59-84
Author(s):  
Yasuomi Yamazaki
2016 ◽  
Vol 55 (21) ◽  
pp. 11110-11124 ◽  
Author(s):  
Yasuomi Yamazaki ◽  
Akinari Umemoto ◽  
Osamu Ishitani

2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


2019 ◽  
Author(s):  
Tian Han ◽  
Marcus J. Giansiracusa ◽  
Zi-Han Li ◽  
You-Song Ding ◽  
Nicholas F. Chilton ◽  
...  

A dichlorido-bridged dinuclear dysprosium(III) single-molecule magnet [Dy<sub>2</sub>L<sub>2</sub>(<i>µ</i>-Cl)<sub>2</sub>(THF)<sub>2</sub>] has been made using a diamine-bis(phenolate) ligand, H<sub>2</sub>L. Magnetic studies show an energy barrier for magnetization reversal (<i>U</i><sub>eff</sub>) around 1000 K. Exchange-biasing effect is clearly seen in magnetic hysteresis with steps up to 4 K. <i>Ab</i> initio calculations exclude the possibility of pure dipolar origin of this effect leading to the conclusion that super-exchange <i>via</i> the chloride bridging ligands is important.


1988 ◽  
Vol 27 (21) ◽  
pp. 3710-3716 ◽  
Author(s):  
Azdine Benzekri ◽  
Patrick Dubourdeaux ◽  
Jean Marc Latour ◽  
Jean Laugier ◽  
Paul Rey

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1269
Author(s):  
Vadim A. Dubskikh ◽  
Anna A. Lysova ◽  
Denis G. Samsonenko ◽  
Alexander N. Lavrov ◽  
Konstantin A. Kovalenko ◽  
...  

Three new 3D metal-organic porous frameworks based on Co(II) and 2,2′-bithiophen-5,5′-dicarboxylate (btdc2−) [Co3(btdc)3(bpy)2]·4DMF, 1; [Co3(btdc)3(pz)(dmf)2]·4DMF·1.5H2O, 2; [Co3(btdc)3(dmf)4]∙2DMF∙2H2O, 3 (bpy = 2,2′-bipyridyl, pz = pyrazine, dmf = N,N-dimethylformamide) were synthesized and structurally characterized. All compounds share the same trinuclear carboxylate building units {Co3(RCOO)6}, connected either by btdc2– ligands (1, 3) or by both btdc2– and pz bridging ligands (2). The permanent porosity of 1 was confirmed by N2, O2, CO, CO2, CH4 adsorption measurements at various temperatures (77 K, 273 K, 298 K), resulted in BET surface area 667 m2⋅g−1 and promising gas separation performance with selectivity factors up to 35.7 for CO2/N2, 45.4 for CO2/O2, 20.8 for CO2/CO, and 4.8 for CO2/CH4. The molar magnetic susceptibilities χp(T) were measured for 1 and 2 in the temperature range 1.77–330 K at magnetic fields up to 10 kOe. The room-temperature values of the effective magnetic moments for compounds 1 and 2 are μeff (300 K) ≈ 4.93 μB. The obtained results confirm the mainly paramagnetic nature of both compounds with some antiferromagnetic interactions at low-temperatures T < 20 K in 2 between the Co(II) cations separated by short pz linkers. Similar conclusions were also derived from the field-depending magnetization data of 1 and 2.


2021 ◽  
Author(s):  
Kaili Zhu ◽  
Xudong Xu ◽  
Mengqiu Xu ◽  
Ping Deng ◽  
Wenbo Wu ◽  
...  

Molbank ◽  
10.3390/m1263 ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. M1263
Author(s):  
Anatoliy A. Vereshchagin ◽  
Julia V. Novoselova ◽  
Arseniy Y. Kalnin ◽  
Daniil A. Lukyanov ◽  
Oleg V. Levin

Multipodal salicylaldehydes have attracted much scientific interest as scaffolds for the construction of multinuclear complexes, as well as metal and covalent organic frameworks. Herein, we report a preparation of 4′,4′′′,4′′′′′-nitrilotris(4-methoxy-[1,1′-biphenyl]-3-carbaldehyde), a direct precursor for the tripodal salicylaldehyde with triphenylamine core. The structure of the product was confirmed by molecular spectroscopy. The reported approach may be broadened over a variety of multipodal salicylaldehydes.


2021 ◽  
Author(s):  
Marco Nazareno State Dell'Anna ◽  
Mathew Laureano ◽  
Hamed Bateni ◽  
John E Matthiesen ◽  
Ludovic Zaza ◽  
...  

The integration of microbial and electrochemical conversions in hybrid processes broadens the portfolio of products accessible from biomass. For instance, sugars and lignin monomers can be biologically converted to cis,cis-muconic...


Sign in / Sign up

Export Citation Format

Share Document