Application of Internet +AI in the Lifecycle Management of Drugs

Author(s):  
Yujie Wang ◽  
Yuanzhou Guan ◽  
Yi Liang
Keyword(s):  
2019 ◽  
Vol 21 (3) ◽  
pp. 25 ◽  
Author(s):  
Muyu Liu ◽  
Lei Liang ◽  
Hao Wu ◽  
Gang Xu ◽  
Qian Li

2016 ◽  
Vol 111 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
Martin Eigner ◽  
Christian Muggeo ◽  
Hristo Apostolov ◽  
Patrick Schäfer
Keyword(s):  

2014 ◽  
Vol 109 (11) ◽  
pp. 853-860 ◽  
Author(s):  
Martin Eigner ◽  
Hristo Apostolov ◽  
Thomas Dickopf ◽  
Patrick Schäfer ◽  
Karl-Gerhard Faißt
Keyword(s):  

Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 84
Author(s):  
Andreas Deuter ◽  
Sebastian Imort

Product lifecycle management (PLM) as a holistic process encompasses the idea generation for a product, its conception, and its production, as well as its operating phase. Numerous tools and data models are used throughout this process. In recent years, industry and academia have developed integration concepts to realize efficient PLM across all domains and phases. However, the solutions available in practice need specific interfaces and tend to be vendor dependent. The Asset Administration Shell (AAS) aims to be a standardized digital representation of an asset (e.g., a product). In accordance with its objective, it has the potential to integrate all data generated during the PLM process into one data model and to provide a universally valid interface for all PLM phases. However, to date, there is no holistic concept that demonstrates this potential. The goal of this research work is to develop and validate such an AAS-based concept. This article demonstrates the application of the AAS in an order-controlled production process, including the semi-automatic generation of PLM-related AAS data. Furthermore, it discusses the potential of the AAS as a standard interface providing a smooth data integration throughout the PLM process.


2021 ◽  
Vol 1 ◽  
pp. 1887-1896
Author(s):  
Vahid Salehi

AbstractCurrently, inconsistent software versions lead to massive challenges for many car manufacturers. This is partly because within the product lifecycle management and the software engineering process, there is no correct handling of software versions for the “data entry” (installation of software on the ECU) of the vehicles. Furthermore, there are currently major challenges for many vehicle manufacturers to ensure transparency, integrity and full traceability of SW data status vis-à-vis the legislator. To counteract these challenges, new solutions in the field of vehicle engineering are to be developed based on a new platform called “CarEngChainNet” and Blockchain technology. On the basis of the “CarEngChainNet” platform, new main and sub-chain chains will be developed that allow tamper-proof SW data management (Peer to Peer and crypto technology) across the entire PLM chain with new methods such as model-based systems engineering of the requirement, function and integration of the SW components in different areas of vehicle development. The aim is to develop new transmission chains of vehicles with individually packaged software artefacts (e.g. ECU software) that can be securely transmitted from server to server into the vehicle.


2021 ◽  
Vol 11 (13) ◽  
pp. 5975
Author(s):  
Ana María Camacho ◽  
Eva María Rubio

The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 14 contributions published in this Special Issue of Applied Sciences present cutting-edge advances in the field of Manufacturing Engineering focusing on advances and innovations in manufacturing processes; additive manufacturing and 3D printing; manufacturing of new materials; Product Lifecycle Management (PLM) technologies; robotics, mechatronics and manufacturing automation; Industry 4.0; design, modeling and simulation in manufacturing engineering; manufacturing engineering and society; and production planning. Among them, the topic “Manufacturing engineering and society” collected the highest number of contributions (representing 22%), followed by the topics “Product Lifecycle Management (PLM) technologies”, “Industry 4.0”, and “Design, modeling and simulation in manufacturing engineering” (each at 14%). The rest of the topics represent the remaining 35% of the contributions.


Sign in / Sign up

Export Citation Format

Share Document