Prospects and Challenges of DME Fueled Low-Temperature Combustion Engine Technology

Author(s):  
Shanti Mehra ◽  
Avinash Kumar Agarwal
Author(s):  
Stephen M. Walton ◽  
Carlos Perez ◽  
Margaret S. Wooldridge

Ignition studies of two small esters were performed using a rapid compression facility (RCF). The esters (methyl butanoate and butyl methanoate) were chosen to have matching molecular weights, and C:H:O ratios, while varying the lengths of the constituent alkyl chains. The effect of functional group size on ignition delay time was investigated using pressure time-histories and high speed digital imaging. The mixtures studied covered a range of conditions relevant to oxygenated fuels and fuel additives, including bio-derived fuels. Low temperature and moderate pressure conditions were selected for study due to their relevance to advanced low temperature combustion strategies, and internal combustion engine conditions. The results are discussed in terms of the reaction pathways affecting the ignition properties.


Author(s):  
Lu Qiu ◽  
Rolf D. Reitz

Condensation of gaseous fuel is investigated in a low temperature combustion engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng-Robinson equation of state and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections, when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter and unburned hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document