Storm Events of Nice Bay: A Numerical Modeling of the Interactions Between Wave, Current, and Solid Transport

Author(s):  
Rémi Dumasdelage ◽  
Olivier Delestre ◽  
Didier Clamond ◽  
Gourbesville Philippe
1996 ◽  
Vol 33 (9) ◽  
pp. 85-92 ◽  
Author(s):  
Ning Gong ◽  
Thierry Denoeux ◽  
Jean-Luc Bertrand-Krajewski

Models for solid transport in sewers during storm events are increasingly used by engineers and operators to improve their systems and the quality of receiving waters. However, a major difficulty that prevents more general use of these models is their calibration, which requires field data, accurate information about catchments and sewers, and a specific methodology. Therefore, research has been carried out to assess the ability of connectionist models to reproduce and replace usual models for use by an operator. Such models require fewer data, are self-calibrated, and very easy to use. The first stage presented in this paper consists in a comparison between neural networks and the HYPOCRAS model, using simulations of real pollutographs for single storm events. Two specific recurrent neural networks based on the HYPOCRAS model and a general-purpose recurrent multilayer network are used to simulate hydrographs and pollutographs of TSS. The learning algorithm and the performance criterion used for optimization of these networks are described in detail. Experimental results with simulated and real data are then presented.


1996 ◽  
Vol 33 (1) ◽  
pp. 247-256
Author(s):  
N. Gong ◽  
X. Ding ◽  
T. Denoeux ◽  
J.-L. Bertrand-Krajewski ◽  
M. Clément

Models for solid transport in sewers during storm events are increasingly used. An important application of these models is the management of treatment plants during storm events so as to improve the quality of receiving waters. However, a major difficulty that prevents more general use of these tools is their calibration, which requires field data, accurate information about catchments and sewers, and a specific methodology. For that reason, a connectionist model called STORMNET has been designed to reproduce and replace usual conceptual and deterministic models. This model requires fewer data, can be automatically calibrated, and is comparatively simple. It is composed of two recurrent neural networks for the simulation of hydrographs and pollutographs of suspended solids, respectively. In this paper, we present an updated version of STORMNET designed for optimal management of wastewater treatment plants during storm events. This model has been validated using both model and real data. The results show the efficiency of STORMNET as a computational tool for simulating stormwater pollution.


2007 ◽  
Author(s):  
T. Campbell ◽  
B. de Sonneville ◽  
L. Benedet ◽  
D. J. W. Walstra ◽  
C. W. Finkl

Author(s):  
D.S. Rakisheva ◽  
◽  
B.G. Mukanova ◽  
I.N. Modin ◽  
◽  
...  

Numerical modeling of the problem of dam monitoring by the Electrical Resistivity Tomography method is carried out. The mathematical model is based on integral equations with a partial Fourier transform with respect to one spatial variable. It is assumed that the measurement line is located across the dam longitude. To approximate the shape of the dam surface, the Radial Basic Functions method is applied. The influence of locations of the water-dam, dam-basement, basement-leakage boundaries with respect to the sounding installation, which is partially placed under the headwater, is studied. Numerical modeling is carried out for the following varied parameters: 1) water level at the headwater; 2) the height of the leak; 3) the depth of the leak; 4) position of the supply electrode; 5) water level and leaks positions are changing simultaneously. Modeling results are presented in the form of apparent resistivity curves, as it is customary in geophysical practice.


2015 ◽  
Vol 35 ◽  
pp. 232-235 ◽  
Author(s):  
Leonardo Piccinini ◽  
Paolo Fabbri ◽  
Marco Pola ◽  
Enrico Marcolongo ◽  
Alessia Rosignoli

2016 ◽  
Vol 41 ◽  
pp. 10-13 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Silvia Lombi ◽  
Alessandra Piana

Sign in / Sign up

Export Citation Format

Share Document