Essential Tools for Water Resources Analysis, Planning, and Management

2021 ◽  
1985 ◽  
Vol 17 (6-7) ◽  
pp. 879-890 ◽  
Author(s):  
Edwin E. Herricks

With increased emphasis on environmental quality objectives in water resources planning and management, past practices of simply considering water quality as the only environmental quality objective are inappropriate. Expanded environmental quality objectives include maintenance of high quality aquatic habitat. Water resource systems must provide both physical and chemical conditions appropriate for the propagation and maintenance of healthy diverse aquatic communities. Managing water resources to provide high quality habitat involves planning to meet both water quality and water quantity objectives. Existing technology based water quality controls and stream based water quality criteria can now be supplemented by aquatic habitat management. An approach to aquatic habitat management is illustrated by use of the Incremental Methodology developed by the U. S. Fish and Wildlife Service. The Incremental Methodology uses measures of aquatic habitat to assess instream flows required for by aquatic life. Thus the range of environmental quality objectives in resources planning and management is expanded by application of these methods to include aquatic habitat as well as water quality management. Methods used to determine instream flow needs for rivers in Illinois are reviewed, and the use of this information in developing regulations limiting water extraction for off stream use are described. Aquatic habitat based management is shown to provide workable methods to meet expanded environmental quality objectives in water resources planning and management.


2014 ◽  
Author(s):  
◽  
Oluwaseun Kunle Oyebode

Streamflow modelling remains crucial to decision-making especially when it concerns planning and management of water resources systems in water-stressed regions. This study proposes a suitable method for streamflow modelling irrespective of the limited availability of historical datasets. Two data-driven modelling techniques were applied comparatively so as to achieve this aim. Genetic programming (GP), an evolutionary algorithm approach and a differential evolution (DE)-trained artificial neural network (ANN) were used for streamflow prediction in the upper Mkomazi River, South Africa. Historical records of streamflow and meteorological variables for a 19-year period (1994- 2012) were used for model development and also in the selection of predictor variables into the input vector space of the models. In both approaches, individual monthly predictive models were developed for each month of the year using a 1-year lead time. Two case studies were considered in development of the ANN models. Case study 1 involved the use of correlation analysis in selecting input variables as employed during GP model development, while the DE algorithm was used for training and optimizing the model parameters. However in case study 2, genetic programming was incorporated as a screening tool for determining the dimensionality of the ANN models, while the learning process was further fine-tuned by subjecting the DE algorithm to sensitivity analysis. Altogether, the performance of the three sets of predictive models were evaluated comparatively using three statistical measures namely, Mean Absolute Percent Error (MAPE), Root Mean-Squared Error (RMSE) and coefficient of determination (R2). Results showed better predictive performance by the GP models both during the training and validation phases when compared with the ANNs. Although the ANN models developed in case study 1 gave satisfactory results during the training phase, they were unable to extensively replicate those results during the validation phase. It was found that results from case study 1 were considerably influenced by the problems of overfitting and memorization, which are typical of ANNs when subjected to small amount of datasets. However, results from case study 2 showed great improvement across the three evaluation criteria, as the overfitting and memorization problems were significantly minimized, thus leading to improved accuracy in the predictions of the ANN models. It was concluded that the conjunctive use of the two evolutionary computation methods (GP and DE) can be used to improve the performance of artificial neural networks models, especially when availability of datasets is limited. In addition, the GP models can be deployed as predictive tools for the purpose of planning and management of water resources within the Mkomazi region and KwaZulu-Natal province as a whole.


Sign in / Sign up

Export Citation Format

Share Document