Phenomenological Study of Two-Zero Textures of Neutrino Mass Matrices in Minimal Extended Seesaw Mechanism

Author(s):  
Priyanka Kumar ◽  
Mahadev Patgiri
2011 ◽  
Vol 26 (07) ◽  
pp. 501-514 ◽  
Author(s):  
S. DEV ◽  
SHIVANI GUPTA ◽  
RADHA RAMAN GAUTAM

We study the existence of one/two texture zeros or one/two vanishing minors in the neutrino mass matrix with μτ symmetry. In the basis where the charged lepton mass matrix and the Dirac neutrino mass matrix are diagonal, the one/two zeros or one/two vanishing minors on the right-handed Majorana mass matrix having μτ symmetry will propagate via seesaw mechanism as one/two vanishing minors or one/two texture zeros in the neutrino mass matrix with μτ symmetry respectively. It is found that only five such texture structures of the neutrino mass matrix are phenomenologically viable. For tribimaximal mixing, these texture structures reduce the number of free parameters to one. Interesting predictions are obtained for the effective Majorana mass Mee, the absolute mass scale and the Majorana-type CP violating phases.


2011 ◽  
Vol 26 (08) ◽  
pp. 567-574 ◽  
Author(s):  
ASAN DAMANIK

We construct a neutrino mass matrix Mν via a seesaw mechanism with perturbed invariant under a cyclic permutation by introducing a parameter δ into the diagonal elements of Mν with the assumption that trace of the perturbed Mν is equal to trace of the unperturbed Mν. We found that the perturbed neutrino mass matrices Mν can predict the mass-squared difference [Formula: see text] with the possible hierarchy of neutrino mass is normal or inverted hierarchy. By using the advantages of the mass-squared differences and mixing parameters data from neutrino oscillation experiments, we then have neutrino masses in inverted hierarchy with masses: |m1| = 0.101023 eV , |m2| = 0.101428 eV and |m3| = 0.084413 eV .


2004 ◽  
Vol 19 (01) ◽  
pp. 1-79 ◽  
Author(s):  
ZHI-ZHONG XING

We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.


2020 ◽  
Vol 35 (09) ◽  
pp. 2050053
Author(s):  
Goran Senjanović ◽  
Vladimir Tello

In the LHC era the issue of the origin and nature of neutrino mass has attained a new meaning and a renewed importance. The growing success of the Higgs–Weinberg mechanism behind the charged fermion masses paves the way for answering the question of neutrino mass. We have shown recently how the spontaneous breaking of parity in the context of the minimal left–right symmetric model allows to probe the origin of neutrino mass in complete analogy with the charged fermions masses in the Standard Model. We revisit here this issue and fill in the gaps left in our previous work. In particular we discuss a number of different mathematical approaches to the problem of disentangling the seesaw mechanism and show how a unique analytical solution emerges. Most important, we give all the possible expressions for the neutrino Dirac mass matrix for general values of light and heavy neutrino mass matrices. In practical terms what is achieved is an untangling of the seesaw mechanism with clear and precise predictions testable at hadron colliders such as LHC.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850167 ◽  
Author(s):  
Takeshi Fukuyama ◽  
Nobuchika Okada

Alternative renormalizable minimal non-SUSY SO(10) GUT model is proposed. Instead of a 126-dimensional Higgs field, a 120-dimensional Higgs filed is introduced in addition to a 10-dimensional Higgs field and plays a crucial role to reproduce the realistic charged fermion mass matrices. With contributions of 120 Higgs field, the original Witten’s scenario of inducing the right-handed Majorana neutrino mass through 2-loop diagrams becomes phenomenologically viable. This model inherits the nice features of the conventional renormalizable minimal SO(10) GUT model with [Formula: see text] Higgs fields, while supplemented with a low scale seesaw mechanism due to the 2-loop induced right-handed Majorana neutrino mass.


2021 ◽  
pp. 136609
Author(s):  
Sanjoy Mandal ◽  
Nicolás Rojas ◽  
Rahul Srivastava ◽  
José W.F. Valle

Sign in / Sign up

Export Citation Format

Share Document