hadron colliders
Recently Published Documents


TOTAL DOCUMENTS

1207
(FIVE YEARS 116)

H-INDEX

94
(FIVE YEARS 6)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Luca Buonocore ◽  
Massimiliano Grazzini ◽  
Jürg Haag ◽  
Luca Rottoli

AbstractWe consider the associated production of a vector or Higgs boson with a jet in hadronic collisions. When the transverse momentum $$q_T$$ q T of the boson-jet system is much smaller than its invariant mass Q, the QCD perturbative expansion is affected by large logarithmic terms that must be resummed to all orders. We discuss the all-order resummation structure of the logarithmically enhanced contributions up to next-to-leading logarithmic accuracy. Resummation is performed at the differential level with respect to the kinematical variables of the boson-jet system. Soft-parton radiation produces azimuthal correlations that are fully accounted for in our framework. We present explicit analytical results for the resummation coefficients up to next-to-leading order and next-to-leading logarithmic accuracy, that include the exact dependence on the jet radius.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 39
Author(s):  
Lucio Anderlini ◽  
Marco Bellini ◽  
Chiara Corsi ◽  
Stefano Lagomarsino ◽  
Chiara Lucarelli ◽  
...  

Tracking detectors at future high luminosity hadron colliders are expected to be able to stand unprecedented levels of radiation as well as to efficiently reconstruct a huge number of tracks and primary vertices. To face the challenges posed by the radiation damage, new extremely radiation hard materials and sensor designs will be needed, while the track and vertex reconstruction problem can be significantly mitigated by the introduction of detectors with excellent timing capabilities. Indeed, the time coordinate provides extremely powerful information to disentangle overlapping tracks and hits in the harsh hadronic collision environment. Diamond 3D pixel sensors optimised for timing applications provide an appealing solution to the above problems as the 3D geometry enhances the already outstanding radiation hardness and allows to exploit the excellent timing properties of diamond. We report here the first full timing characterisation of 3D diamond sensors fabricated by electrode laser graphitisation in Florence. Results from a 270MeV pion beam test of a first prototype and from tests with a β source on a recently fabricated 55×55μm2 pitch sensor are discussed. First results on sensor simulation are also presented.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Julien Baglio ◽  
Gabriele Coniglio ◽  
Barbara Jäger ◽  
Michael Spira

Abstract We present a calculation of the next-to-leading order QCD corrections to weakino+squark production processes at hadron colliders and their implementation in the framework of the POWHEG-BOX, a tool for the matching of fixed-order perturbative calculations with parton-shower programs. Particular care is taken in the subtraction of on-shell resonances in the real-emission corrections that have to be assigned to production processes of a different type. In order to illustrate the capabilities of our code, representative results are shown for selected SUSY parameter points in the pMSSM11. The perturbative stability of the calculation is assessed for the pp →$$ {\tilde{\upchi}}_1^0{\tilde{d}}_L $$ χ ˜ 1 0 d ˜ L process. For the squark+chargino production process pp →$$ {\upchi}_1^{-}{\tilde{u}}_L $$ χ 1 − u ˜ L distributions of the chargino’s decay products are provided with the help of the decay feature of PYTHIA 8.


2021 ◽  
Author(s):  
Andy Buckley ◽  
Christopher White ◽  
Martin White
Keyword(s):  

2021 ◽  
Author(s):  
Andy Buckley ◽  
Christopher White ◽  
Martin White

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Jeffrey R. Forshaw ◽  
Jack Holguin

Abstract Coherence violation is an interesting and counter-intuitive phenomenon in QCD. We discuss the circumstances under which violation occurs in observables sensitive to soft radiation and arrive at the conclusion that almost all such observables at hadron colliders will violate coherence to some degree. We illustrate our discussion by considering the gaps-between-jets observable, where coherence violation is super-leading, then we generalise to other observables, including precise statements on the logarithmic order of coherence violation.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
N. Bethencourt de León ◽  
G. Chachamis ◽  
A. Sabio Vera

AbstractWe investigate different final state features in Mueller–Navelet jets events at hadron colliders. The focus lies on the average rapidity ratio between subsequent minijet emissions which has been investigated in previous works but now is modified to also incorporate the transverse momenta together with the rapidities of the emitted jets. We study the dependence of this observable on a lower transverse momentum veto which does affect the typical minijet multiplicity of the events under scrutiny. We find that this observable is stable when including higher order quantum corrections, also when collinear terms are resummed to all orders.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Simon Badger ◽  
Christian Brønnum-Hansen ◽  
Dmitry Chicherin ◽  
Thomas Gehrmann ◽  
Heribertus Bayu Hartanto ◽  
...  

Abstract We present an analytic computation of the gluon-initiated contribution to diphoton plus jet production at hadron colliders up to two loops in QCD. We reconstruct the analytic form of the finite remainders from numerical evaluations over finite fields including all colour contributions. Compact expressions are found using the pentagon function basis. We provide a fast and stable implementation for the colour- and helicity-summed interference between the one-loop and two-loop finite remainders in C++ as part of the NJet library.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Pouya Asadi ◽  
Rodolfo Capdevilla ◽  
Cari Cesarotti ◽  
Samuel Homiller

Abstract A high energy muon collider can provide new and complementary discovery potential to the LHC or future hadron colliders. Leptoquarks are a motivated class of exotic new physics models, with distinct production channels at hadron and lepton machines. We study a vector leptoquark model at a muon collider with $$ \sqrt{s} $$ s = 3, 14 TeV within a set of both UV and phenomenologically motivated flavor scenarios. We compute which production mechanism has the greatest reach for various values of the leptoquark mass and the coupling between leptoquark and Standard Model fermions. We find that we can probe leptoquark masses up to an order of magnitude beyond $$ \sqrt{s} $$ s with perturbative couplings. Additionally, we can also probe regions of parameter space unavailable to flavor experiments. In particular, all of the parameter space of interest to explain recent low-energy anomalies in B meson decays would be covered even by a $$ \sqrt{s} $$ s = 3 TeV collider.


Sign in / Sign up

Export Citation Format

Share Document