neutrino mass matrix
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 29)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Zhen-hua Zhao

Abstract In this paper, we consider the imbedding of the popular and well-motivated trimaximal mixing and μ–τ reflection symmetry (which can help us shape the forms of the neutrino mass matrix) in the minimal seesaw model (which contains much fewer parameters than the general seesaw model) with two TeV-scale right-handed neutrinos (for realizing a low-scale seesaw) of nearly degenerate masses (for realizing a resonant leptogenesis). However, either for the trimaximal mixing scenario (which is realized through the Form Dominance approach here) or for the μ–τ reflection symmetry scenario, leptogenesis cannot proceed. To address this issue, we consider the possibility that the special forms of the neutrino mass matrix for the trimaximal mixing and μ–τ reflection symmetry are slightly broken by the renormalization group evolution effect, thus allowing leptogenesis to proceed. It is found that in the normal case of the neutrino mass ordering, the baryon asymmetry thus generated can reproduce the observed value. For completeness, we have also extended our analysis to the scenario that two right-handed neutrinos are not nearly degenerate any more. Unfortunately, in this scenario the final baryon asymmetry is smaller than the observed value by several orders of magnitude.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Monal Kashav ◽  
Surender Verma

Abstract In this work, we have proposed a modular A4 symmetric model of neutrino mass which, simultaneously, explains observed baryon asymmetry of the Universe (BAU). In minimal extension of the standard model (SM) with two right-handed neutrinos we work in a supersymmetric framework. At Type-I seesaw level, the model predicts scaling in the neutrino mass matrix. In order to have correct low energy phenomenology, we propose two possible scenarios of scale-breaking in the neutrino mass matrix emanating from Type-I seesaw. Scenario-1 is based on the dimension-5 Weinberg operator whereas scenario-2 implements Type-II seesaw via scalar triplet Higgs superfields (∆,$$ \overline{\Delta } $$ ∆ ¯ ). Interestingly, the breaking patterns in both, otherwise dynamically different scenarios, are similar which can be attributed to the same charge assignments of superfields (∆,$$ \overline{\Delta } $$ ∆ ¯ ) and the Higgs superfield Hu under modular A4 symmetry. The breaking is found to be proportional to the Yukawa coupling of modular weight 10 ($$ {Y}_{1,1\prime}^{10} $$ Y 1 , 1 ′ 10 ). We, further, investigates the predictions of the model under scenario-2 (Type-I+II) for neutrino mass, mixings and matter-antimatter asymmetry of the Universe. The model predicts normal hierarchical neutrino masses and provide a robust range (0.05 − 0.08)eV for sum of neutrino masses (Σmi). Lepton number violating 0νββ decay amplitude (Mee) is obtained to lie in the range (0.04 − 0.06)eV. Future 0νββ decay experiments such as NEXT and nEXO shall pose crucial test for the model. Both CP conserving and CP violating solutions are allowed in the model. Interesting correlations are obtained, specially, between Yukawa couplings of modular weight 2 and complex modulus τ. Contrary to $$ {Y}_2^2 $$ Y 2 2 and $$ {Y}_3^2 $$ Y 3 2 , the Yukawa coupling $$ {Y}_1^2 $$ Y 1 2 is found to be insensitive to τ and thus to CP violation because complex modulus τ is the only source of CP violation in the model. We, also, investigate the prediction of the model for BAU. The model exhibit consistent explanation of BAU for right-handed Majorana neutrino mass scale in the range ((1 − 5) × 1013) GeV.


2021 ◽  
pp. 115541
Author(s):  
A. Ismael ◽  
E.I. Lashin ◽  
M. AlKhateeb ◽  
N. Chamoun

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
A. Ismael ◽  
M. AlKhateeb ◽  
N. Chamoun ◽  
E. I. Lashin

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada ◽  
Yuichi Uesaka

Abstract We investigate a model based on hidden U(1)X gauge symmetry in which neutrino mass is induced at one-loop level by effects of interactions among particles in hidden sector and the Standard Model leptons. Neutrino mass generation is also associated with U(1)X breaking scale which is taken to be low to suppress neutrino mass. Then we formulate neutrino mass matrix, lepton flavor violating processes and muon g − 2 which are induced via interactions among Standard Model leptons and particles in U(1)X hidden sector that can be sizable in our scenario. Carrying our numerical analysis, we show expected ratios for these processes when generated neutrino mass matrix can fit the neutrino data.


Sign in / Sign up

Export Citation Format

Share Document