Effect of Soil Water Deficits on Plant–Water Relationship: A Review

Author(s):  
Amitav Bhattacharya
1990 ◽  
Vol 115 (5) ◽  
pp. 715-721 ◽  
Author(s):  
R.B. Hutmacher ◽  
J.J. Steiner ◽  
J.E. Ayars ◽  
A.B. Mantel ◽  
S.S. Vail

The influence of irrigation frequency and the severity and rate of development of soil water deficits on the vegetative growth and water status of carrots (Daucus carota L. var. sativa DC.) grown for seed were investigated in a fine sandy loam soil. Beginning with the period of rapid development of primary umbels, various irrigation frequencies [daily vs. intervals corresponding to 30 mm of accumulated crop evapotranspiration (ETc)] were investigated at irrigation rates ranging from 40% to 120% of estimated ETC. The magnitude and rate of development of soil water deficits markedly influenced carrot responses to developing water deficits. Stomata] conductance and leaf water potential (LWP) measurements exhibited some potential for use in irrigation scheduling and were the most sensitive and consistent indicators of plant water status. Under low-frequency continuous-deficit irrigation, a combination of moderate reductions in stomatal conductance and major reductions in peak leaf area and late-season maintenance of viable leaf area occurred. These responses were effective water-conserving mechanisms, allowing growth at a reduced rate and continued development of viable seed. In contrast, rapid development of soil water deficits resulted in nearly complete stomatal closure, cessation of growth, and rapid reductions in leaf area.


1989 ◽  
Vol 22 (1) ◽  
pp. 33-44 ◽  
Author(s):  
J.D. Devries ◽  
J.M. Bennett ◽  
K.J. Boote ◽  
S.L. Albrecht ◽  
C.E. Maliro

2021 ◽  
Author(s):  
Javier de la Casa ◽  
Adrià Barbeta ◽  
Asun Rodriguez-Uña ◽  
Lisa Wingate ◽  
Jérôme Ogeé ◽  
...  

<p> </p><p>Long-standing ecological theory establishes that the isotopic composition of the plant water reflects that of the root-accessed sources, at least in non-saline or non-xeric environments. However, a growing number of studies challenge this assumption by reporting plant-source offsets in water isotopic composition, for a wide range of ecosystems. We conducted a global meta-analysis to systematically quantify the magnitude of this plant-source offset in water isotopic composition and its potential explanatory factors. We compiled 108 studies reporting dual water isotopic composition (δ<sup>2</sup>H and δ<sup>18</sup>O) of plant and source water. From these studies, we extracted the δ<sup>2</sup>H and δ<sup>18</sup>O of both plant and source waters for 223 plant species from artic to tropical biomes. For each species and sampling campaign, within each study, we calculated the mean line conditioned excess (LC-excess), with the slope and intercept of the local meteoric water line, and the mean soil water line conditioned excess (SWL-excess), from the slope and intercept of the soil water evaporation line. For each study site and sampling campaign, we obtained land surface temperature and volumetric soil water from the ERA5 database. For each study species, we recorded the functional type, leaf habit and for those available wood density. We found, on average, a significantly negative SWL-excess: plant water was systematically more depleted in δ<sup>2</sup>H than soil water. In > 90% of the cases with significantly negative SWL-excess, we also found negative LC-excess values, meaning that access to sources alternative to soil water was unlikely to explain negative SWL-excess values. </p><p>Calculated SWL-excess was affected by temperature and humidity: there were larger mismatches between plant and source water in isotopic composition in colder and wetter sites. Angiosperms, broadleaved and deciduous species exhibited more negative SWL-excess values than gymnosperms, narrow-leaved and evergreen species. Our results suggest that when using the dual isotopic approach, potential biases in the adscription of plant water sources are more likely in broadleaved forests in humid, and cold regions. Potential underlying mechanism for these isotopic mismatches will be discussed.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document