Quasiconformal Mahalanobis Distance-Based Kernel Mapping Machine Learning for Hyperspectral Data Classification

Author(s):  
Jing Liu ◽  
Yulong Qiao
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Liu ◽  
Yulong Qiao

Intelligent internet data mining is an important application of AIoT (Artificial Intelligence of Things), and it is necessary to construct large training samples with the data from the internet, including images, videos, and other information. Among them, a hyperspectral database is also necessary for image processing and machine learning. The internet environment provides abundant hyperspectral data resources, but the hyperspectral data have no class labels and no so high value for applications. So, it is important to label the class information for these hyperspectral data through machine learning-based classification. In this paper, we present a quasiconformal mapping kernel machine learning-based intelligent hyperspectral data classification algorithm for internet-based hyperspectral data retrieval. The contributions include three points: the quasiconformal mapping-based multiple kernel learning network framework is proposed for hyperspectral data classification, the Mahalanobis distance kernel function is as the network nodes with the higher discriminative ability than Euclidean distance-based kernel function learning, and the objective function of measuring the class discriminative ability is proposed to seek the optimal parameters of the quasiconformal mapping projection. Experiments show that the proposed scheme is effective for hyperspectral image classification and retrieval.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1241
Author(s):  
Véronique Gomes ◽  
Marco S. Reis ◽  
Francisco Rovira-Más ◽  
Ana Mendes-Ferreira ◽  
Pedro Melo-Pinto

The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rung-Ching Chen ◽  
Christine Dewi ◽  
Su-Wen Huang ◽  
Rezzy Eko Caraka

Author(s):  
Sina Keller ◽  
Philipp Maier ◽  
Felix Riese ◽  
Stefan Norra ◽  
Andreas Holbach ◽  
...  

Inland waters are of great importance for scientists as well as authorities since they are essential ecosystems and well known for their biodiversity. When monitoring their respective water quality, in situ measurements of water quality parameters are spatially limited, costly and time-consuming. In this paper, we propose a combination of hyperspectral data and machine learning methods to estimate and therefore to monitor different parameters for water quality. In contrast to commonly-applied techniques such as band ratios, this approach is data-driven and does not rely on any domain knowledge. We focus on CDOM, chlorophyll a and turbidity as well as the concentrations of the two algae types, diatoms and green algae. In order to investigate the potential of our proposal, we rely on measured data, which we sampled with three different sensors on the river Elbe in Germany from 24 June–12 July 2017. The measurement setup with two probe sensors and a hyperspectral sensor is described in detail. To estimate the five mentioned variables, we present an appropriate regression framework involving ten machine learning models and two preprocessing methods. This allows the regression performance of each model and variable to be evaluated. The best performing model for each variable results in a coefficient of determination R 2 in the range of 89.9% to 94.6%. That clearly reveals the potential of the machine learning approaches with hyperspectral data. In further investigations, we focus on the generalization of the regression framework to prepare its application to different types of inland waters.


2017 ◽  
Vol 30 (4) ◽  
pp. 40-45 ◽  
Author(s):  
M. Toplak ◽  
G. Birarda ◽  
S. Read ◽  
C. Sandt ◽  
S. M. Rosendahl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document