Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.)

1993 ◽  
Vol 23 (6) ◽  
pp. 1223-1232 ◽  
Author(s):  
Simon A. Coupe ◽  
Jane E. Taylor ◽  
Peter G. Isaac ◽  
Jeremy A. Roberts
1994 ◽  
Vol 74 (2) ◽  
pp. 275-277 ◽  
Author(s):  
L. A. Murphy ◽  
R. Scarth

Early maturity is a major objective of oilseed rape (Brassica napus L.) breeding programs in western Canada. Maturity of crops is influenced by time of initiation and flowering. The presence of a vernalization requirement affects plant development by delaying floral initiation until the cold requirement of the plant has been satisfied. Five spring oilseed rape cultivars were screened for their response to vernalization. Vernalization treatments consisted of exposure of germinated seeds to 0–42 d at 4 °C. Plants were assessed under a 20-h photoperiod. In general, there was a cumulative response to vernalization, with a decrease in days to each developmental stage as exposure to 4 °C was increased. Vernalization treatment of 6 d at 4 °C was sufficient to decrease both the days to first flower and the final leaf number. The characterization of vernalization response is of interest because variation in flowering time in response to year-to-year variations in the environment could result. Key words:Brassica napus, canola, oilseed rape, vernalization


2013 ◽  
Vol 64 (2) ◽  
pp. 115 ◽  
Author(s):  
A. N. Papantoniou ◽  
J. T. Tsialtas ◽  
D. K. Papakosta

For crops grown in Mediterranean environments, translocation of pre-anthesis assimilates to the fruit is of great importance, because hot and dry conditions during fruit ripening diminish net assimilation rate and nitrogen (N) uptake. This field study was conducted to assess the pattern of dry matter and N accumulation and the role of assimilate translocation in pod development of oilseed rape plants in a Mediterranean environment. Four cultivars of winter oilseed rape (Brassica napus L.), i.e. three hybrids (Royal, Exact, Excalibur) and an inbred line (Fortis), were grown for two growing seasons (2005–06 and 2006–07) in northern Greece. On average, 581, 1247, 1609, and 2749 growing degree-days (GDD) were required for six leaves, stem elongation, 50% anthesis in main stem, and physiological maturity in the first year, and 539, 1085, 1601, and 2728 GDD in the second year. The R2 of the modified Richards function indicated that aboveground biomass and N accumulation were described with high approximation efficacy. The across-cultivars genotype mean maximum predicted total aboveground dry matter and N content were 1368.8 and 21.4 g m–2 in 2006 and 1655.1 and 25.4 g m–2 in 2007. In 2007, dry matter and N translocation from vegetative tissues to pods were 464.4 and 21.0 g m–2, and significantly higher than the corresponding values recorded in 2006 (264.4 and 17.0 g m–2). These differences were due to greater amounts of dry matter and N accumulating at anthesis and the greater sink capacity of plants (pod number) in 2007. The fact that pod development occurred in a period when N accumulation by oilseed rape plants had stopped led to high values of contribution of pre-anthesis N accumulation to pod N content in both years (92.8% in 2006 and 96.6% in 2007). Results indicated that hot and dry weather post anthesis reduced dramatically the net assimilation rates; thus, translocation of pre-anthesis assimilates was crucial for pod development. The results demonstrate that variation in weather conditions between growing seasons is one of the main causes of seasonal variation in oilseed rape productivity under Mediterranean conditions.


Planta ◽  
2013 ◽  
Vol 239 (1) ◽  
pp. 107-126 ◽  
Author(s):  
Mingxiang Liang ◽  
Xiangzhen Yin ◽  
Zhongyuan Lin ◽  
Qingsong Zheng ◽  
Guohong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document