Dynamic response of laminated orthotropic spherical shells including transverse shear deformation and rotatory inertia

1996 ◽  
Vol 17 (3) ◽  
pp. 205-212
Author(s):  
Yang Yiqian ◽  
Ma Hezhong ◽  
Wang Tsunkuei
1956 ◽  
Vol 23 (2) ◽  
pp. 319
Author(s):  
H. Deresiewicz

Abstract The frequency spectrum is computed for the case of free, axially symmetric vibrations of a circular disk with clamped edges, using a theory which includes the effects of rotatory inertia and transverse shear deformation.


1961 ◽  
Vol 28 (4) ◽  
pp. 579-584 ◽  
Author(s):  
T. C. Huang

New frequency and normal mode equations for flexural vibrations of six common types of simple, finite beams are presented. The derivation includes the effect of rotatory inertia and transverse-shear deformation. A specific example is given.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Tingrui Liu ◽  
Wei Xu

Flap/lag stall nonlinear flutter and active control of anisotropic composite wind turbine blade modeled as antisymmetric beam analysis have been investigated based on robust H2controller. The blade is modeled as single-cell thin-walled beam structure, exhibiting flap bending moment-lag transverse shear deformation, and lag bending moment-flap transverse shear deformation, with constant pitch angle set. The stall flutter control of dynamic response characteristics of composite blade incorporating nonlinear aerodynamic model is investigated based on some structural and dynamic parameters. The aeroelastic partial differential equations are reduced by Galerkin method, with the aerodynamic forces decomposed by strip theory. Robust H2optimal controller is developed to enhance the vibrational behavior and dynamic response to aerodynamic excitation under extreme wind conditions and stabilize structures that might be damaged in the absence of control. The effectiveness of the control algorithm is demonstrated in both amplitudes and frequencies by description of time responses, extended phase planes, and frequency spectrum analysis, respectively.


1982 ◽  
Vol 104 (2) ◽  
pp. 426-431 ◽  
Author(s):  
M. Sathyamoorthy

An improved nonlinear vibration theory is used in the present analysis to study the effects of transverse shear deformation and rotatory inertia on the large amplitude vibration behavior of isotropic elliptical plates. When these effects are negligible the differential equations given here readily reduce to the well-known dynamic von Ka´rma´n equations. Based on a single-mode analysis, solutions to the governing equations are presented for immovably clamped elliptical plates by use of Galerkin’s method and the numerical Runge-Kutta procedure. An excellent agreement is found between the present results and those available for nonlinear bending and large amplitude vibration of elliptical plates. The present results for moderately thick elliptical plates indicate significant influences of the transverse shear deformation, axes ratio, and semi-major axis-to-thickness ratio on the large amplitude vibration of elliptical plates.


Sign in / Sign up

Export Citation Format

Share Document