Long-term chilling of young tomato plants under low light and subsequent recovery

Planta ◽  
1992 ◽  
Vol 186 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Wolfgang Brüggemann ◽  
Thomas A. W. van der Kooij ◽  
Philip R. van Hasselt
Planta ◽  
1992 ◽  
Vol 186 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Wolfgang Brüggemann ◽  
Thomas A. W. van der Kooij ◽  
Philip R. van Hasselt

Planta ◽  
1994 ◽  
Vol 194 (2) ◽  
Author(s):  
Wolfgang Br�ggemann ◽  
Sabine Klaucke ◽  
Klaudia Maas-Kantel
Keyword(s):  

Planta ◽  
1994 ◽  
Vol 194 (2) ◽  
pp. 160-168 ◽  
Author(s):  
Wolfgang Br�ggemann ◽  
Sabine Klaucke ◽  
Klaudia Maas-Kantel
Keyword(s):  

2020 ◽  
Vol 22 (1) ◽  
pp. 221
Author(s):  
Joanna Wójtowicz ◽  
Adam K. Jagielski ◽  
Agnieszka Mostowska ◽  
Katarzyna B. Gieczewska

The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
Elena Dzhos ◽  
Nadezhda Golubkina ◽  
Marina Antoshkina ◽  
Irina Kondratyeva ◽  
Andrew Koshevarov ◽  
...  

Intensive space exploration includes profound investigations on the effect of weightlessness and cosmic radiation on plant growth and development. Tomato seeds are often used in such experiments though up to date the results have given rather vague information about biochemical changes in mature plants grown from seeds subjected to spaceflight. The effect of half a year of storage in the International Space Station (ISS) on tomato seeds (cultivar Podmoskovny ranny) was studied by analyzing the biochemical characteristics and mineral content of mature plants grown from these seeds both in greenhouse and field conditions. A significant increase was recorded in ascorbic acid, polyphenol and carotenoid contents, and total antioxidant activity (AOA), with higher changes in the field conditions compared to greenhouse. Contrary to control plants, the ones derived from space-stored seeds demonstrated a significant decrease in root AOA. The latter plants also showed a higher yield, but lower content of fruit dry matter, sugars, total dissolved solids and organic acids. The fruits of plants derived from space-stored seeds demonstrated decreased levels of Fe, Cu and taste index. The described results reflect the existence of oxidative stress in mature tomato plants as a long-term consequence of the effect of spaceflight on seed quality, whereas the higher yield may be attributed to genetic modifications.


Sign in / Sign up

Export Citation Format

Share Document