Horticulturae
Latest Publications


TOTAL DOCUMENTS

965
(FIVE YEARS 832)

H-INDEX

14
(FIVE YEARS 8)

Published By Mdpi Ag

2311-7524

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 82
Author(s):  
Simranpreet Kaur ◽  
Sat Pal Sharma ◽  
Navraj Kaur Sarao ◽  
Jaideep Kaur Deol ◽  
Rupeet Gill ◽  
...  

Ten genetically diverse inbred lines, including two genic male sterile lines, of muskmelon (Cucumis melo L.) were crossed in a half-diallel to generate 45 F1 hybrids. These hybrids, along with the parental lines and commercial check, were evaluated for their fruit yield, level of phytochemicals and Fusarium wilt resistance. Both additive and non-additive genetic variances were important in governing the expression of all of the traits; however, the additive gene action for the fruit weight (g), flesh thickness (cm), rind thickness (mm), firmness (lb inch−2), β-carotene content (mg/100 g), non-additive variance for fruit yield (t ha−1), fruit number, total soluble solids (TSS, °Brix), ascorbic acid (mg/100 g) and reaction to Fusarium wilt were comparatively more important. The parental line MM-625 was the best general combiner for fruit yield, rind thickness and β-carotene content (mg/100 g). The exotic line Riogold was the best combiner for flesh thickness and firmness. The netted inbred line MM-610 was the best general combiner for fruit weight, ascorbic acid and reaction to Fusarium wilt. The inbred lines KP4HM-15 and MM-916 were the best general combiners for the number of fruits per vine and TSS. The best cross-combinations for fruit yield ha−1 and TSS were MS-1×M-610 and Kajri×MM-904, respectively. The hybrids KP4HM-15×MM Sel-103 and KP4HM-15×MM-1831 recorded the highest standard heterosis for fruit yield and TSS. The landrace-derived inbred lines Kajri, MM Sel-103 and KP4HM-15 produced moderate-to-highly FW-resistant hybrids. Out of the 121 SSR markers applied, 70 exhibited parental polymorphism. The markers DM0561, CMAAAGN14, TJ147, CMMS35_3, CMAGN45 and DE1337 identified specific/unique alleles in certain parental genotypes. Thus, the findings of this study revealed that the novel inbred lines can effectively be combined to generate heterotic F1 hybrids for yield and other traits, such as rind and flesh thickness, TSS, β-carotene content and firmness. Furthermore, SSR markers can potentially be utilized to confirm the genetic diversity among the parental lines, and for the DNA fingerprinting of F1 hybrids.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 81
Author(s):  
Mario Wegher ◽  
Michele Faralli ◽  
Massimo Bertamini

Compact bunches have been often associated with higher susceptibility to Botrytis cinerea and therefore reduction in berry quality in grapevine. The objective of this study was to evaluate three management methods (early leaf removal, gibberellic acid, and their combination) for reducing bunch compactness in Vitis vinifera cv. Pinot gris trained in two different training systems with contrasting vigor (Guyot and pergola). Treatments were applied at BBCH 62 or BBCH 65 and yield components, total soluble solids, fruit set, and bunch compactness parameters were evaluated. Both treatments individually reduced berry number, mean bunches weight and bunches compactness as well as yield per vine when compared to control-untreated vines. However, no major differences were observed when both the treatments were applied in combination for Guyot or pergola although a higher reduction in yield was detected for Guyot and a significant increase in total soluble solids was observed in pergola. Our study suggests that intense leaf removal and gibberellic acid applied at early flowering can help reducing bunch compactness in Pinot gris and showing it in two training systems. In particular, leaf removal represents a valuable alternative to plant growth regulators (i.e., gibberellic acid) as applicable in organic viticulture.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 76
Author(s):  
Kellie J. Walters ◽  
Roberto G. Lopez

Altering the growing temperature during controlled-environment production not only influences crop growth and development, but can also influence volatile organic compound (VOC) production and, subsequently, sensory attributes of culinary herbs. Therefore, the objectives of this study were to (1) quantify the influence of mean daily temperature (MDT) and daily light integral (DLI) on key basil phenylpropanoid and terpenoid concentrations, (2) determine if differences in sensory characteristics due to MDT and DLI influence consumer preference, and (3) identify the sweet basil attributes consumers prefer. Thus, 2-week-old sweet basil ‘Nufar’ seedlings were transplanted into deep-flow hydroponic systems in greenhouses with target MDTs of 23, 26, 29, 32, or 35 °C and DLIs of 7, 9, or 12 mol·m−2·d−1. After three weeks, the two most recently mature leaves were harvested for gas chromatography–mass spectrometry (GC–MS) and consumer sensory analysis. Panel evaluations were conducted through a sliding door with samples served individually while panelists answered Likert scale and open-ended quality attribute and sensory questions. The DLI did not influence VOC concentrations. Increasing MDT from 23 to 36 °C during production increased 1,8 cineole, eugenol, and methyl chavicol concentrations linearly and did not affect linalool concentration. The increases in phenylpropanoid (eugenol and methyl chavicol) were greater than increases in terpenoid (1,8 cineole) concentrations. However, these increases did not impact overall consumer or flavor preference. The MDT during basil production influenced appearance, texture, and color preference of panelists. Taken together, MDT during production influenced both VOC concentrations and textural and visual attribute preference of basil but did not influence overall consumer preference. Therefore, changing the MDT during production can be used to alter plant growth and development without significantly affecting consumer preference.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 77
Author(s):  
Christian Höing ◽  
Sharvari Raut ◽  
Abozar Nasirahmadi ◽  
Barbara Sturm ◽  
Oliver Hensel

The state-of-the-art technique to control slug pests in agriculture is the spreading of slug pellets. This method has some downsides, because slug pellets also harm beneficials and often fail because their efficiency depends on the prevailing weather conditions. This study is part of a research project which is developing a pest control robot to monitor the field, detect slugs, and eliminate them. Robots represent a promising alternative to slug pellets. They work independent of weather conditions and can distinguish between pests and beneficials. As a prerequisite, a robot must be able to reliably identify slugs irrespective of the characteristics of the surrounding conditions. In this context, the utilization of computer vision and image analysis methods are challenging, because slugs look very similar to the soil, particularly in color images. Therefore, the goal of this study was to develop an optical filter-based system that distinguishes between slugs and soil. In this context, the spectral characteristics of both slugs and soil in the visible and visible near-infrared (VNIR) wavebands were measured. Conspicuous maxima followed by conspicuous local minima were found for the reflection spectra of slugs in the near infrared range from 850 nm to 990 nm]. Thus, this enabled differentiation between slugs and soils; soils showed a monotonic increase in the intensity of the relative reflection for this wavelength. The extrema determined in the reflection spectra of slugs were used to develop and set up a slug detector device consisting of a monochromatic camera, a filter changer and two narrow bandpass filters with nominal wavelengths of 925 nm and 975 nm. The developed optical system takes two photographs of the target area at night. By subtracting the pixel values of the images, the slugs are highlighted, and the soil is removed in the image due to the properties of the reflection spectra of soils and slugs. In the resulting image, the pixels of slugs were, on average, 12.4 times brighter than pixels of soil. This enabled the detection of slugs by a threshold method.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 75
Author(s):  
Amira K. Nasrallah ◽  
Ahmed A. Kheder ◽  
Maimona A. Kord ◽  
Ahmed S. Fouad ◽  
Mohamed M. El-Mogy ◽  
...  

Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 78
Author(s):  
Gangqiang Cao ◽  
Wenjing Jiang ◽  
Gongyao Shi ◽  
Zhaoran Tian ◽  
Jingjing Shang ◽  
...  

PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 74
Author(s):  
Maria Munawar ◽  
Atta Ur Rahman ◽  
Pablo Castillo ◽  
Dmytro P. Yevtushenko

The nematode family, Anguinidae, is a diverse group of polyphagous nematodes, generally known as fungal feeders or parasites of aerial plant parts. Here, we present the morphological and molecular characterization of adult females of two Nothotylenchus species, N. medians and N. similis, along with host association and geographical distribution data of the genus. Both species are recorded as new reports from Canada and designated as reference populations for future studies. Morphological or morphometrical variation was not observed in the Canadian population of N. medians and N. similis, in comparison with the original description. Phylogenetic analyses based on 18S and D2–D3 of 28S genes placed both species within Anguinidae. Since the biology of the genus Nothotylenchus has not been rigorously characterized, the habitat and distribution information presented in this study will shed some light on the ecology of these nematodes. Notably, the detection of N. medians and N. similis in our nematode inventory survey indicates that considerable Nothotylenchus diversity is hidden in these soils. Consequently, increased surveys and more in-depth research are needed to explore the full diversity of anguinids inhabiting these cultivated areas.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 79
Author(s):  
Vahideh Biareh ◽  
Farid Shekari ◽  
Saeed Sayfzadeh ◽  
Hamidreza Zakerin ◽  
Esmaeil Hadidi ◽  
...  

Limited water stress is one of the most important environmental stresses that affect the growth, quantity and quality of agronomic crops. This study was undertaken to investigate the effect of foliar applied salicylic acid (SA) on physiological responses, antioxidant enzymes and qualitative traits of Cucurbita pepo L. Plants exposed to water-stressed conditions in two years of field studies. Irrigation regimes at three soil matric potential levels (−0.3, −1.2 and −1.8 MPa) and SA at four levels (0.0, 0.5, 1.0 and 1.5 mg/L) were considered as main plot and sub-plots, respectively. The soil matric potential values (MPa) was measured just before irrigation. Results showed that under water stressed conditions alone, the amounts of malondialdehyde (MDA), hydrogen peroxide (H2O2) and ion leakage were higher compared with control treatment. However, spraying of SA under both water stress and non-stress conditions reduced the values of the above parameters. Water stress increased CAT, APX and GR enzymes activity. However foliar application of SA led to the decrease of CAT, APX and GR under all soil matric potential levels. The amount of carbohydrates and fatty acids increased with the intensity of water stress and SA modulated this response. By increasing SA concentration both in optimum and stress conditions, saturated fatty acids content decreased. According to our data, the SA application is an effective approach to improve pumpkin growth under water stress conditions.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 73
Author(s):  
Xinyi Hao ◽  
Bolei Jiao ◽  
Yunlei Wang ◽  
Boxing Shang ◽  
Yan Xu

Grapevine (Vitis spp.) is globally one of the most economically important fruit crops. China is the largest grapevine-growing country of the world and Shaanxi province is one of the major grapevine-growing provinces in the country. A survey of GLRaV-3 found it widespread, with 57–100% infection frequencies, in both wine and table grapevine cultivars of three grapevine-growing regions of Shaanxi province. The virus infection frequencies varied with cultivars and regions. In order to obtain the full genomic length of a new GLRaV-3 isolate, GLRaV-3-Sau (accession number MK988555), was sequenced. This isolate has a genome of 18026 nucleotides, and 14 open reading frames (ORFs). The full-genome of the isolate GLRaV-3-Sau shared 85.88% nucleotide identity to GLRaV-3-LN, another isolate found in China. Coat protein (CP) genes of GLRaV-3 isolates were identical (99%) to the Vitis vinifera isolate (accession number HQ185608.1) from the USA. Immunohistochemistry for virus localization found that distribution patterns were similar in red-berried cultivar ‘Cabernet Sauvignon’ and white-berried cultivar ‘Chardonnay’, and GLRaV-3 is restricted in phloem tissue of vascular bundles. Virus transmission by micrografting found virus transmission efficiency was higher in ‘Chardonnay’ and ‘Thompson Seedless’ than in ‘Hunan-1’, indicating that ‘Hunan-1’ was less sensitive to GLRaV-3. As far as we know, these are the most comprehensive comparisons on the genome and CP genes of GLRaV-3 worldwide and the first to have found that the grapevine ‘Hunan-1’ is less susceptible to GLRaV-3.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 80
Author(s):  
Jing Bin ◽  
Meilin Zhu ◽  
Huifen Ding ◽  
Zhouying Zai ◽  
Tingting Shi ◽  
...  

Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.


Sign in / Sign up

Export Citation Format

Share Document