Structural homology of endosperm high molecular weight glutenin subunits of common wheat (Triticum aestivum L.)

1985 ◽  
Vol 70 (6) ◽  
pp. 634-642 ◽  
Author(s):  
G. Galili ◽  
M. Feldman
Author(s):  
Marina Tikhonova ◽  
Anne Ingver ◽  
Reine Koppel

Abstract High molecular weight glutenin subunits (HMW-GS) of wheat are important factors in the determination of bread-making quality. They are responsible for elasticity and polymer formation of wheat dough. In the present study, 43 winter and 40 spring common wheat (Triticum aestivum L.) cultivars originated from Estonia, Belarus, Finland, Denmark, France, Germany, the Great Britain, Latvia, Lithuania, the Netherlands, Norway, Poland, Russia, Sweden, and New Zealand were characterised for Glu-A1 and Glu-D1 allelic composition using PCR method. Analyses were conducted with one DNA marker for identification of Glu-D1 allele encoding subunit Dx5, three DNA markers for Glu-A1 Ax1, Ax2* and AxNull subunits. It was determined that 32 (74.4%) winter and 35 (83.3%) spring cultivars had allele Glu-D1d, and 23 (53.5%) winter and 33 (78.6%) spring — Glu-A1a or Glu-A1b alleles, which have positive effect on dough properties. Polymorphism at Glu-A1 locus was detected in 15 cultivars, and 9 cultivars were polymorphic for locus Glu-D1. The obtained results were compared with published SDS-PAGE data. Complete or partial agreements were found for 78.1% of Glu-A1 and 70.6% of Glu-D1 alleles. Rapid and accurate identification of wheat Glu-1 alleles by molecular markers can be used for selection of wheat genotypes with good bread-making potential.


2014 ◽  
Vol 46 (4) ◽  
pp. 342-352
Author(s):  
Jong-Yeol Lee ◽  
Hye-Rang Beom ◽  
Yeong-Tae Kim ◽  
Sun-Hyung Lim ◽  
Ung-Han Yoon ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ewa Filip

The main goal of our study was to present research data on genes encoding high molecular weight glutenin subunits (HMW-GS) associated with high flour bread-making quality. This is the leading research objective in our institute in the area of wheat gluten in cultivars that have not been studied so far in that respect, but which can potentially be a valuable source of new information. Identification and characterization of high molecular weight glutenin subunits (HMW-GS) were performed using sequencing and SDS-PAGE and STS-PCR methods. Genes located in the vicinity of the Glu-1 locus have been identified and characterized in 28 Polish cultivars of Triticum aestivum. The results were then analyzed using the following computer programs: Finch TV, BLAST, MEGA 4, Molecular Imager® Gel Doc™ XR, and Quantity One software (Bio-Rad). Three alleles (a, b, c) have been identified in the Glu-A1 locus, 6 alleles (a, b, c, d, e, k) in the Glu-B1 locus, and 2 alleles (a, d) in Glu-D1 using the SDS-PAGE method. The amplification of specific HMW-GS sequences generated one product of 450 bp in 1Dx5 in 13 cultivars of old wheat and of 435 bp in 1Dx2 in 15 cultivars. The amplification products of primers for 1Dy10 and 1Dy12 genes were 422 bp and 552 bp in size, respectively.


Sign in / Sign up

Export Citation Format

Share Document