A numerical study of turbulent square-duct flow using an anisotropic k-? model

1990 ◽  
Vol 2 (1) ◽  
pp. 61-71 ◽  
Author(s):  
S. Nisizima
2006 ◽  
Vol 170 (1) ◽  
pp. 12-25 ◽  
Author(s):  
C.M. Winkler ◽  
Sarma L. Rani ◽  
S.P. Vanka

1991 ◽  
Vol 113 (4) ◽  
pp. 563-568 ◽  
Author(s):  
R. W. Yeo ◽  
P. E. Wood ◽  
A. N. Hrymak

Three different discretization schemes were used to study the flow in a 90-degree bend square duct. The numerical method consists of a general curvilinear coordinate formulation of the governing equations and a non-staggered grid for the variables. A stable method of implementing the higher-order schemes is proposed. The second-order upwinding and QUICK schemes give results which compare more favourably with the experimental data than the first-order upwinding method. In 3-D flow problems, the grid-refinement is severely limited by the amount of computer storage and the use of higher-order upwinding schemes provides a better alternative in obtaining accurate flow predictions.


2013 ◽  
Vol 56 ◽  
pp. 217-224 ◽  
Author(s):  
Md. Saidul Islam ◽  
Rabindra Nath Mondal
Keyword(s):  

Author(s):  
Akram Ghanem ◽  
Thierry Lemenand ◽  
Dominique Della Valle ◽  
Hassan Peerhossaini

A numerical investigation of chaotic laminar flow and heat transfer in isothermal-wall square-channel configurations is presented. The computations, based on a finite-volume method with the SIMPLEC algorithm, are conducted in terms of Péclet numbers ranging from 7 to 7×105. The geometries, based on the split-and-recombine (SAR) principle, are first proposed for micromixing purposes, and are then optimized and scaled up to three-dimensional minichannels with 3-mm sides that are capable of handling industrial fluid manipulation processes. The aim is to assess the feasibility of this mass- and heat-transfer technique for out-of-laboratory commercial applications and to compare different configurations from a process intensification point of view. The effects of the geometry on heat transfer and flow characteristics are examined. Results show that the flux recombination phenomenon mimicking the baker’s transform in the SAR-1 and SAR-2 configurations produces chaotic structures and promotes mass transfer. This phenomenon also accounts for higher convective heat transfer exemplified by increased values of the Nusselt number compared to the chaotic continuous-flow configuration and the baseline plain square-duct geometry. Energy expenditures are explored and the overall heat transfer enhancement factor for equal pumping power is calculated. The SAR-2 configuration reveals superior heat-transfer characteristics, enhancing the global gain by up to 17-fold over the plain duct heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document