duct geometry
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2042 (1) ◽  
pp. 012107
Author(s):  
Sadra Sahebzadeh ◽  
Hamid Montazeri ◽  
Abdolrahim Rezaeiha

Abstract The aerodynamic performance of building-integrated ducted wind turbines depends on several parameters such as the duct geometry, variation in wind speed and direction (which are inherent characteristics of the urban wind). This study focuses on the impact of wind direction on wind energy potential of a previously optimized building-integrated duct geometry [1], embedded in a generic isolated high-rise building. The mean power density at the duct throat (where the turbine can be installed) is investigated in four wind directions of θ = 0°, 30°, 60° and 90°. High-fidelity steady RANS simulations, validated with experimental data, are used. The results show that the studied duct can increase the mean power density at its throat (i.e. rotor plane) up to 7.08 – 24.8 times that of the freestream flow at the same height for a wide range of -60° ⩽ 0 ⩽ 60°. The variation of wind energy potential in different wind directions is shown to be due to the increased size of the nozzle stagnation and separation regions for θ > 0° which limit the nozzle effective area and lower flowrate through the throat. Flow deviation from the duct central axis towards its walls further depletes the wind energy in friction.


2021 ◽  
Vol 6 (5) ◽  
pp. 1263-1275
Author(s):  
Vinit Dighe ◽  
Dhruv Suri ◽  
Francesco Avallone ◽  
Gerard van Bussel

Abstract. Ducted wind turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform flows are caused by the presence of buildings or other surface discontinuities. For this reason, the aerodynamic performance of DWTs in yawed-flow conditions must be characterized depending upon their geometric parameters and operating conditions. A numerical study to investigate the characteristics of flow around two DWT configurations using a simplified duct-actuator disc (AD) model is carried out. The analysis shows that the aerodynamic performance of a DWT in yawed flow is dependent on the mutual interactions between the duct and the AD, an interaction that changes with duct geometry. For the two configurations studied, the highly cambered variant of duct configuration returns a gain in performance by approximately 11 % up to a specific yaw angle (α= 17.5∘) when compared to the non-yawed case; thereafter any further increase in yaw angle results in a performance drop. In contrast, performance of less cambered variant duct configuration drops for α>0∘. The gain in the aerodynamic performance is attributed to the additional camber of the duct that acts as a flow-conditioning device and delays duct wall flow separation inside of the duct for a broad range of yaw angles.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Federico Millo ◽  
Andrea Piano ◽  
Benedetta Peiretti Paradisi ◽  
Cristiano Segatori ◽  
Lucio Postrioti ◽  
...  

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
J. V. Taylor ◽  
F. Flanagan ◽  
A. Dunlop ◽  
S. D. Grimshaw ◽  
R. J. Miller

Abstract Air breathing rocket engines require turbomachinery and ducting that is substantially lighter than that used in ground-based or aerospace gas turbines. In order to reduce the weight of the axial compressor, the design of the inter-spool swan neck duct is targeted. In this paper, a circumferential splitter blade is used to reduce loading and diffusion on the duct endwalls. The splitter and duct geometry are coupled and optimized together using 2D CFD. A design is selected that is 30% shorter than ducts that are currently used in aerospace gas turbines, and the 3D flow features are investigated in further detail using an experimental rig and 3D CFD. This paper shows that the “splittered” duct has three benefits over a conventional duct design: first, separation of the endwalls is prevented even at short duct lengths, this will reduce distortion into the downstream compressor. Second, losses generated by corner separations on structural struts can be reduced by 20%, enabling short ducts to achieve high performance. Third, splittered ducts are shown to be twice as robust to uncertain inlet flow conditions as conventional ducts. This allows a designer to target high-performance short designs with reduced risk.


2021 ◽  
Vol 67 (3) ◽  
pp. 823-843
Author(s):  
Levent Aydinbakar ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar ◽  
Daisaku Matsuda

AbstractThe U-duct turbulent flow is a known benchmark problem with the computational challenges of high Reynolds number, high curvature and strong flow dependence on the inflow profile. We use this benchmark problem to test and evaluate the Space–Time Variational Multiscale (ST-VMS) method with ST isogeometric discretization. A fully-developed flow field in a straight duct with periodicity condition is used as the inflow profile. The ST-VMS serves as the core method. The ST framework provides higher-order accuracy in general, and the VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow. The ST isogeometric discretization enables more accurate representation of the duct geometry and increased accuracy in the flow solution. In the straight-duct computations to obtain the inflow velocity, the periodicity condition is enforced with the ST Slip Interface method. All computations are carried out with quadratic NURBS meshes, which represent the circular arc of the duct exactly in the U-duct computations. We investigate how the results vary with the time-averaging range used in reporting the results, mesh refinement, and the Courant number. The results are compared to experimental data, showing that the ST-VMS with ST isogeometric discretization provides good accuracy in this class of flow problems.


2020 ◽  
Vol 11 (1) ◽  
pp. 351
Author(s):  
Ananda Subramani Kannan ◽  
Tejas Sharma Bangalore Narahari ◽  
Yashas Bharadhwaj ◽  
Andreas Mark ◽  
Gaetano Sardina ◽  
...  

The Knudsen paradox—the non-monotonous variation of mass-flow rate with the Knudsen number—is a unique and well-established signature of micro-channel rarefied flows. A particle which is not of insignificant size in relation to the duct geometry can significantly alter the flow behavior when introduced in such a system. In this work, we investigate the effects of a stationary particle on a micro-channel Poiseuille flow, from continuum to free-molecular conditions, using the direct simulation Monte-Carlo (DSMC) method. We establish a hydrodynamic basis for such an investigation by evaluating the flow around the particle and study the blockage effect on the Knudsen paradox. Our results show that with the presence of a particle this paradoxical behavior is altered. The effect is more significant as the particle becomes large and results from a shift towards relatively more ballistic molecular motion at shorter geometrical distances. The need to account for combinations of local and non-local transport effects in modeling reactive gas–solid flows in confined geometries at the nano-scale and in nanofabrication of model pore systems is discussed in relation to these results.


Author(s):  
J. V. Taylor ◽  
F. Flanagan ◽  
A. Dunlop ◽  
S. D. Grimshaw ◽  
R. J. Miller

Abstract Air breathing rocket engines require turbomachinery and ducting that is substantially lighter than that used in ground based or aerospace gas turbines. In order to reduce the weight of the axial compressor, the design of the inter-spool swan neck duct is targeted. In this paper a circumferential splitter blade is used to reduce loading and diffusion on the duct endwalls. The splitter and duct geometry are coupled and optimised together using 2D CFD. A design is selected that is 30% shorter than ducts that are currently used in aerospace gas turbines and the 3D flow features are investigated in further detail using an experimental rig and 3D CFD. This paper shows that the “splittered” duct has 3 benefits over a conventional duct design: First, separation of the endwalls is prevented even at short duct lengths, this will reduce distortion into the downstream compressor. Second, losses generated by corner separations on structural struts can be reduced by 20%, enabling short ducts to achieve high performance. Third, splittered ducts are shown to be twice as robust to uncertain inlet flow conditions as conventional ducts. This allows a designer to target high performance short designs with reduced risk.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Denis V. Esipov ◽  
Denis V. Chirkov ◽  
Dmitriy S. Kuranakov ◽  
Vasiliy N. Lapin

Abstract One of the fundamental phenomena associated with the transport of rigid particles by the fluid flow in narrow ducts and tubes is the Segre–Silberberg effect. Experimental observations show that a spherical particle transported by the fluid flow in a long channel occupies a position of equilibrium between the wall and the centerline of the channel. In this study, this effect was numerically investigated using a novel semi-implicit immersed boundary method based on the discrete forcing approach. A uniform Cartesian mesh is used for the duct, whereas a moving Lagrangian mesh is used to track the position of the particle. Unlike previous studies, both cases of the duct geometry are considered: a round tube and a flat channel. Good agreement is shown to the available theoretical and numerical results of other studies. The problem is described by two dimensionless parameters, the channel Reynolds number, and the relative particle diameter. Parametric studies to these parameters were carried out, showing fundamental dependencies of equilibrium position on Reynolds number from 20 to 500 and on relative particle diameter from 0.2 to 0.7. It is demonstrated that the position of equilibrium becomes closer to the wall with the increase of Reynolds number, as well as with the decrease of particle diameter. In addition, the dependence of particle velocity on its diameter is investigated. The obtained results are of both theoretical and practical interest, with possible applications ranging from proppant transport to the design of microfluidic devices.


Sign in / Sign up

Export Citation Format

Share Document