Ultrastructural aspects of the nucleus infundibularis dorsalis in the caudal hypothalamus of Xenopus laevis

1973 ◽  
Vol 137 (4) ◽  
pp. 513-520 ◽  
Author(s):  
J. Peute
Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 1-14
Author(s):  
Gerald W. Eagleson ◽  
Bruce G. Jenks ◽  
A. P. van Overbeeke

A series of grafting experiments was conducted to determine pituitary origins prior to brain tube closure in Xenopus laevis. Extirpation experiments indicated that the ventral neural ridge (VNR) tissue of stage-18+ embryos was essential for pituitary development. Bolton–Hunter reagent was used to label stage-18+ VNR tissue with 125I, and this tissue was then returned to the donor and its subsequent ontogenesis followed. Labelled tissue was ultimately found in the ventral hypothalamus, the ventral retina, and the anterior pituitary. Using immunocytochemical techniques with antisera to adrenocorticotropin (ACTH), it was found that some of the VNR-derived cells were corticotropes. A region of the nucleus infundibularis which was radioactive labelled also gave ACTH-positive immunoreaction. This might indicate that some ACTH containing neurones of the hypothalamus are VNR in origin. We suggest that stage-18+ VNR is the site of attachment of brain and anterior pituitary ectoderm. Part of this adherence point is eventually incorporated into the anterior pituitary and will form corticotropes. It is concluded that the ventral retina, the preoptic region of the hypothalamus, some hypothalamic ACTH-immunoreactive cells, and the most anterior portion of the adenohypophysis are all ventral neural ridge in origin.


Author(s):  
Darcy B. Kelley ◽  
Martha L. Tobias ◽  
Mark Ellisman

Brain and muscle are sexually differentiated tissues in which masculinization is controlled by the secretion of androgens from the testes. Sensitivity to androgen is conferred by the expression of an intracellular protein, the androgen receptor. A central problem of sexual differentiation is thus to understand the cellular and molecular basis of androgen action. We do not understand how hormone occupancy of a receptor translates into an alteration in the developmental program of the target cell. Our studies on sexual differentiation of brain and muscle in Xenopus laevis are designed to explore the molecular basis of androgen induced sexual differentiation by examining how this hormone controls the masculinization of brain and muscle targets.Our approach to this problem has focused on a highly androgen sensitive, sexually dimorphic neuromuscular system: laryngeal muscles and motor neurons of the clawed frog, Xenopus laevis. We have been studying sex differences at a synapse, the laryngeal neuromuscular junction, which mediates sexually dimorphic vocal behavior in Xenopus laevis frogs.


1956 ◽  
Vol 23 (3) ◽  
pp. 265-273 ◽  
Author(s):  
A. C. J. Burgers ◽  
G. J. van Oordt

Sign in / Sign up

Export Citation Format

Share Document