skin secretion
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 52)

H-INDEX

24
(FIVE YEARS 4)

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1529
Author(s):  
Haixin Qin ◽  
Hantian Fang ◽  
Xiaoling Chen ◽  
Lei Wang ◽  
Chengbang Ma ◽  
...  

Amphibian skin-derived antimicrobial peptides (AMPs) have attracted increasing attention from scientists because of their excellent bioactivity and low drug resistance. In addition to being the alternative choice of antibiotics or anticancer agents, natural AMPs can also be modified as templates to optimise their bioactivities further. Here, a novel dermaseptin peptide, t-DPH1, with extensive antimicrobial activity and antiproliferative activity, was isolated from the skin secretion of Phyllomedusa hypochondrialis through ‘shotgun’ cloning. A series of cationicity-enhanced analogues of t-DPH1 were designed to further improve its bioactivities and explore the charge threshold of enhancing the bioactivity of t-DPH1. The present data suggest that improving the net charge can enhance the bioactivities to some extent. However, when the charge exceeds a specific limit, the bioactivities decrease or remain the same. When the net charge achieves the limit, improving the hydrophobicity makes no sense to enhance bioactivity. For t-DPH1, the upper limit of the net charge was +7. All the designed cationicity-enhanced analogues produced no drug resistance in the Gram-negative bacterium, Escherichia coli. These findings provide creative insights into the role of natural drug discovery in providing templates for structural modification for activity enhancement.


Small ◽  
2021 ◽  
pp. 2101699
Author(s):  
Ximu Zhang ◽  
Lin Jiang ◽  
Xian Li ◽  
Liwen Zheng ◽  
Ruyi Dang ◽  
...  

Author(s):  
Yan Lin ◽  
Tianxing Lin ◽  
Ningna Cheng ◽  
Shuting Wu ◽  
Jiancai Huang ◽  
...  

Abstract The skins of frogs of the family Ranidae are particularly rich sources of biologically active peptides, among which antimicrobial peptides (AMPs) constitute the major portion. Some of these have attracted the interest of researchers because they possess both antimicrobial and anticancer activities. In this study, with ‘shotgun’ cloning and MS/MS fragmentation, three AMPs, homologues of family brevinin-1 (brevinin-1HL), and temporin (temporin-HLa and temporin-HLb), were discovered from the skin secretion of the broad-folded frog, Hylarana latouchii. They exhibited various degrees of antimicrobial and antibiofilm activities against test microorganisms and hemolysis on horse erythrocytes. It was found that they could induce bacteria death through disrupting cell membranes and binding to bacterial DNA. In addition, they also showed different potencies towards human cancer cell lines. The secondary structure and physicochemical properties of each peptide were investigated to preliminarily reveal their structure–activity relationships. Circular dichroism spectrometry showed that they all adopted a canonical α-helical conformation in membrane-mimetic solvents. Notably, the prepropeptide of brevinin-1HL from H. latouchii was highly identical to that of brevinin-1GHd from Hylarana guentheri, indicating a close relationship between these two species. Accordingly, this study provides candidates for the design of novel anti-infective and antineoplastic agents to fight multidrug-resistant bacteria and malignant tumors and also offers additional clues for the taxonomy of ranid frogs.


Herpetozoa ◽  
2021 ◽  
Vol 34 ◽  
pp. 169-173
Author(s):  
Elkin Y. Suárez-Villota ◽  
Eliane Trovatti ◽  
Felipe A. Contreras ◽  
José J. Nuñez

Some skin secretions with adhesive properties allow frogs to distract predators and escape; their nature is poorly studied. Here, we report the sticky skin secretion released by the Patagonian frog Eupsophus vertebralis when stressed. This secretion contained ~ 50% proteins spanning 25–250 kDa and required a fast setting time to turn into strong adhesive, which worked well on synthetic and biological materials. Lap-shear assays with Eupsophus glue secretion showed average shear strength of 3.34 MPa, comparable to cyanoacrylate (5.47 MPa). These properties suggest its biotechnological value for practical applications in industrial and medical sectors.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 895
Author(s):  
Yaxian Lin ◽  
Siyan Liu ◽  
Xinping Xi ◽  
Chengbang Ma ◽  
Lei Wang ◽  
...  

Antimicrobial peptides (AMPs) are considered potential alternatives to antibiotics due to their advantages in solving antibiotic resistance. Brevinin-2GUb, which was extracted from the skin secretion of Hylarana guentheri, is a peptide with modest antimicrobial activity. Several analogues were designed to explore the structure–activity relationship and enhance its activity. In general, the Rana box is not an indispensable motif for the bioactivity of Brevinin-2GUb, and the first to the 19th amino acids at the N-terminal end are active fragments, such that shortening the peptide while maintaining its bioactivity is a promising strategy for the optimisation of peptides. Keeping a complete hydrophobic face and increasing the net charges are key factors for antimicrobial activity. With the increase of cationic charges, α-helical proportion, and amphipathicity, the activity of t-Brevinin-2GUb-6K (tB2U-6K), in combatting bacteria, drastically improved, especially against Gram-negative bacteria, and the peptide attained the capacity to kill clinical isolates and fungi as well, which made it possible to address some aspects of antibiotic resistance. Thus, peptide tB2U-6K, with potent antimicrobial activity against antibiotic-resistant bacteria, the capacity to inhibit the growth of biofilm, and low toxicity against normal cells, is of value to be further developed into an antimicrobial agent.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 966
Author(s):  
Yuqing Chen ◽  
Xinping Xi ◽  
Chengbang Ma ◽  
Mei Zhou ◽  
Xiaoling Chen ◽  
...  

Kunitz-like trypsin inhibitors are one of the most noteworthy research objects owing to their significance in pharmacological studies, including anticarcinogenic activity, obesity regulation and anticoagulation. In the current study, a novel Kunitz-like trypsin inhibitor, Kunitzin-AH, was isolated from the skin secretion of Amolops hainanensis. The novel peptide displayed a modest trypsin inhibitory activity with the inhibitor constant (Ki) value of 1.18 ± 0.08 µM without inducing damage to healthy horse erythrocytes. Then, a series of shortened variants of Kunitzin-AH were designed by truncating a peptide loop and site mutation inside the loop to illustrate the structure–activity relationship of the trypsin inhibition function. Among the variants, a significant decrease was observed for the Cys-Cys loop domain, while the extension of an Arg at N-terminus (RCKAAFC) retained the inhibitory activity, indicating that the -RCK-motif is essential in forming the reactive domain for exerting the inhibitory activity. Furthermore, substitutions of Ala by hydrophobic or hydrophilic residues decreased the activity, indicating suitable steric hindrance provides convenience for the combination of trypsin. Additionally, the conformational simulation of the analogues processed with Chimera and Gromacs and further combination simulations between the peptides and trypsin conducted with HDOCK offered a potential opportunity for the natural trypsin inhibitory drug design. The truncated sequence, AH-798, may be a good replacement for the full-length peptide, and can be optimized via cyclization for further study.


Author(s):  
Jie Yang ◽  
Bei Zhang ◽  
Yingna Huang ◽  
Teng Liu ◽  
Baishuang Zeng ◽  
...  

Abstract Development of new and effective anti-influenza drugs is critical for prophylaxis and treatment of influenza A virus infection. A wide range of amphibian skin secretions have been identified to show antiviral activity. Our previously reported ESC-1GN, a peptide from the skin secretion of Hylarana guentheri, displayed good antimicrobial and anti-inflammatory effects. Here, we found that ESC-1GN possessed significant antiviral effects against influenza A viruses. Moreover, ESC-1GN could inhibit the entry of divergent H5N1 and H1N1 virus strains with the IC50 values from 1.29 to 4.59 μM. Mechanism studies demonstrated that ESC-1GN disrupted membrane fusion activity of influenza A viruses by interaction with HA2 subunit. The results of site-directed mutant assay and molecular docking revealed that E105, N50 and the residues around them on HA2 subunit could form hydrogen bonds with amino acid on ESC-1GN, which were critical for ESC-1GN binding to HA2 and inhibiting the entry of influenza A viruses. Altogether, these not only suggest that ESC-1GN maybe represent a new type of excellent template designing drugs against influenza A viruses, but also it may shed light on the immune mechanism and survival strategy of H. guentheri against viral pathogens.


2021 ◽  
pp. 129136
Author(s):  
Liwen Zheng ◽  
Qunhao Wang ◽  
Yu Shrike Zhang ◽  
Hongmei Zhang ◽  
Yingying Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document