Faculty Opinions recommendation of A microtubule-binding Rho-GEF controls cell morphology during convergent extension of Xenopus laevis.

Author(s):  
Carol Otey
2012 ◽  
Vol 198 (4) ◽  
pp. 695-709 ◽  
Author(s):  
Bianca Kraft ◽  
Corinna D. Berger ◽  
Veronika Wallkamm ◽  
Herbert Steinbeisser ◽  
Doris Wedlich

Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing convergent extension during Xenopus laevis gastrulation. These shape changes associated with lateral intercalation behavior require a dynamic modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7 (Fz7) controls cell adhesion by forming separate adhesion-modulating complexes (AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin (denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a Wnt-11–Fz7 complex, its Dynamin1- and clathrin-dependent internalization was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented C-cadherin clustering, resulting in reduced cell adhesion and modified cell sorting activity. Importantly, Wnt-11 did not influence C-cadherin internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin), which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin did not directly interact and did not form a joint complex with Fz7, we suggest that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP, that act in parallel to reduce cell adhesion by hampering lateral clustering of C-cadherin.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 193-209 ◽  
Author(s):  
R. Keller ◽  
M. Danilchik

We show with time-lapse micrography that narrowing in the circumblastoporal dimension (convergence) and lengthening in the animal-vegetal dimension (extension) of the involuting marginal zone (IMZ) and the noninvoluting marginal zone (NIMZ) are the major tissue movements driving blastopore closure and involution of the IMZ during gastrulation in the South African clawed frog, Xenopus laevis. Analysis of blastopore closure shows that the degree of convergence is uniform from dorsal to ventral sides, whereas the degree of extension is greater on the dorsal side of the gastrula. Explants of the gastrula show simultaneous convergence and extension in the dorsal IMZ and NIMZ. In both regions, convergence and extension are most pronounced at their common boundary, and decrease in both animal and vegetal directions. Convergent extension is autonomous to the IMZ and begins at stage 10.5, after the IMZ has involuted. In contrast, expression of convergent extension in the NIMZ appears to be dependent on basal contact with chordamesoderm or with itself. The degree of extension decreases progressively in lateral and ventral sectors. Isolated ventral sectors show convergence without a corresponding degree of extension, perhaps reflecting the transient convergence and thickening that occurs in this region of the intact embryo. We present a detailed mechanism of how these processes are integrated with others to produce gastrulation. The significance of the regional expression of convergence and extension in Xenopus is discussed and compared to gastrulation in other amphibians.


2020 ◽  
Author(s):  
Anneke D. Kakebeen ◽  
Robert Huebner ◽  
Asako Shindo ◽  
Kujin Kwon ◽  
Taejoon Kwon ◽  
...  

AbstractExplanted tissues from vertebrate embryos reliably develop in culture and have provided essential paradigms for understanding embryogenesis, from early embryological investigations of induction, to the extensive study of Xenopus animal caps, to the current studies of mammalian gastruloids. Cultured explants of the Xenopus dorsal marginal zone (“Keller” explants) serve as a central paradigm for studies of convergent extension cell movements, yet we know little about the global patterns of gene expression in these explants. In an effort to more thoroughly develop this important model system, we provide here a time-resolved bulk transcriptome for developing Keller explants.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3131-3140 ◽  
Author(s):  
S.W. Moore ◽  
R.E. Keller ◽  
M.A. Koehl

Physically, the course of morphogenesis is determined by the distribution and timing of force production in the embryo and by the mechanical properties of the tissues on which these forces act. We have miniaturized a standard materials-testing procedure (the stress-relaxation test) to measure the viscoelastic properties of the dorsal involuting marginal zone, prechordal mesoderm, and vegetal endoderm of Xenopus laevis embryos during gastrulation. We focused on the involuting marginal zone, because it undergoes convergent extension (an important and wide-spread morphogenetic process) and drives involution, blastopore closure and elongation of the embryonic axis. We show that the involuting marginal zone stiffens during gastrulation, stiffening is a special property of this region rather than a general property of the whole embryo, stiffening is greater along the anteroposterior axis than the mediolateral axis and changes in the cytoskeleton or extracellular matrix are necessary for stiffening, although changes in cell-cell adhesions or cell-matrix adhesions are not ruled out. These findings provide a baseline of data on which future experiments can be designed and make specific, testable predictions about the roles of the cytoskeleton, extracellular matrix and intercellular adhesion in convergent extension, as well as predictions about the morphogenetic role of convergent extension in early development.


Development ◽  
1988 ◽  
Vol 102 (4) ◽  
pp. 677-686 ◽  
Author(s):  
C.M. Regen ◽  
R.A. Steinhardt

The discovery that lithium treatment at blastula stages can induce axis formation suggested that it might act by respecifying the cytoplasmic rearrangement-generated dorsoventral pattern, so that ventral cells behave like their dorsal counterparts. We have studied the effects of Li+ treatment on the spatial layout of the cell-group movements of gastrulation to see whether this is the case. We find that involution of the chordamesoderm and associated archenteron roof is retarded by Li+, an effect which does not suggest dorsal respecification. However, in both migration of the leading edge mesoderm and convergent extension of the marginal zone, ventral regions clearly do show dorsal-type movement. Because of this, and because of examples where disruption of involution and effects on axis differentiation do not correlate, we propose that failure of involution represents a distinct effect of Li+ involving disruption of mechanical relationships at the blastopore. Thus archenteron formation poorly reflects the dorsoventral pattern. Extension of sandwich explants of the ventral marginal zone is proposed as a reliable quantitative assay for alterations to the dorsoventral pattern.


2007 ◽  
Vol 303 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Motohiro Homma ◽  
Masafumi Inui ◽  
Akimasa Fukui ◽  
Tatsuo Michiue ◽  
Koji Okabayashi ◽  
...  

2008 ◽  
Vol 182 (6) ◽  
pp. 1073-1082 ◽  
Author(s):  
Gun-Hwa Kim ◽  
Jung-Hyun Her ◽  
Jin-Kwan Han

The single-pass transmembrane protein Ryk (atypical receptor related tyrosine kinase) functions as a Wnt receptor. However, Ryk's correlation with Wnt/Frizzled (Fz) signaling is poorly understood. Here, we report that Ryk regulates Xenopus laevis convergent extension (CE) movements via the β-arrestin 2 (βarr2)-dependent endocytic process triggered by noncanonical Wnt signaling. During X. laevis gastrulation, βarr2-mediated endocytosis of Fz7 and dishevelled (Dvl/Dsh) actually occurs in the dorsal marginal zone tissues, which actively participate in noncanonical Wnt signaling. Noncanonical Wnt11/Fz7-mediated endocytosis of Dsh requires the cell-membrane protein Ryk. Ryk interacts with both Wnt11 and βarr2, cooperates with Fz7 to mediate Wnt11-stimulated endocytosis of Dsh, and signals the noncanonical Wnt pathway in CE movements. Conversely, depletion of Ryk and Wnt11 prevents Dsh endocytosis in dorsal marginal zone tissues. Our study suggests that Ryk functions as an essential regulator for noncanonical Wnt/Fz-mediated endocytosis in the regulation of X. laevis CE movements.


Sign in / Sign up

Export Citation Format

Share Document