Effects of two successive maximal exercise tests on pulmonary gas exchange in athletes

1996 ◽  
Vol 74 (1-2) ◽  
pp. 141-147 ◽  
Author(s):  
Corinne F. Caillaud ◽  
Florence M. Anselme ◽  
Christian G. Prefaut
1989 ◽  
Vol 66 (6) ◽  
pp. 2491-2495 ◽  
Author(s):  
S. K. Powers ◽  
J. Lawler ◽  
J. A. Dempsey ◽  
S. Dodd ◽  
G. Landry

Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 77 (2) ◽  
pp. 912-917 ◽  
Author(s):  
S. R. Hopkins ◽  
D. C. McKenzie ◽  
R. B. Schoene ◽  
R. W. Glenny ◽  
H. T. Robertson

To investigate pulmonary gas exchange during exercise in athletes, 10 high aerobic capacity athletes (maximal aerobic capacity = 5.15 +/- 0.52 l/min) underwent testing on a cycle ergometer at rest, 150 W, 300 W, and maximal exercise (372 +/- 22 W) while trace amounts of six inert gases were infused intravenously. Arterial blood samples, mixed expired gas samples, and metabolic data were obtained. Indexes of ventilation-perfusion (VA/Q) mismatch were calculated by the multiple inert gas elimination technique. The alveolar-arterial difference for O2 (AaDO2) was predicted from the inert gas model on the basis of the calculated VA/Q mismatch. VA/Q heterogeneity increased significantly with exercise and was predicted to increase the AaDO2 by > 17 Torr during heavy and maximal exercise. The observed AaDO2 increased significantly more than that predicted by the inert gas technique during maximal exercise (10 +/- 10 Torr). These data suggest that this population develops diffusion limitation during maximal exercise, but VA/Q mismatch is the most important contributor (> 60%) to the wide AaDO2 observed.


2004 ◽  
Vol 287 (5) ◽  
pp. R1202-R1208 ◽  
Author(s):  
Carsten Lundby ◽  
Jose A. L. Calbet ◽  
Gerrit van Hall ◽  
Bengt Saltin ◽  
Mikael Sander

We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 ± 0.7, 69 ± 0.9, and 72 ± 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 ± 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 ± 1.1, 58 ± 1.7, and 62 ± 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 ± 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 ± 1.4, 76.9 ± 1.7, and 79.3 ± 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 ± 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 ± 4, 58 ± 4, and 52 ± 4 l·min·l O2−1, respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 ± 3 l·min·l O2−1). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 ± 1.3, 11 ± 1.5, and 10 ± 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 ± 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.


1998 ◽  
Vol 84 (5) ◽  
pp. 1723-1730 ◽  
Author(s):  
S. R. Hopkins ◽  
W. M. Bayly ◽  
R. F. Slocombe ◽  
H. Wagner ◽  
P. D. Wagner

During short-term maximal exercise, horses have impaired pulmonary gas exchange, manifested by diffusion limitation and arterial hypoxemia, without marked ventilation-perfusion (V˙a/Q˙) inequality. Whether gas exchange deteriorates progressively during prolonged submaximal exercise has not been investigated. Six thoroughbred horses performed treadmill exercise at ∼60% of maximal oxygen uptake until exhaustion (28–39 min). Multiple inert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory data were obtained at rest and 5-min intervals during exercise. Oxygen uptake, cardiac output, and alveolar-arterial[Formula: see text] gradient were unchanged after the first 5 min of exercise. Alveolar ventilation increased progressively during exercise, from increased tidal volume and respiratory frequency, resulting in an increase in arterial[Formula: see text] and decrease in arterial[Formula: see text]. At rest there was minimalV˙a/Q˙inequality, log SD of the perfusion distribution (log SDQ˙) = 0.20. This doubled by 5 min of exercise (log SDQ˙ = 0.40) but did not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintain excellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughV˙a/Q˙inequality is greater than at rest, it is less than observed in most mammals and the effect on gas exchange is minimal.


1999 ◽  
Vol 87 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Steven Deem ◽  
Richard G. Hedges ◽  
Steven McKinney ◽  
Nayak L. Polissar ◽  
Michael K. Alberts ◽  
...  

Severe anemia is associated with remarkable stability of pulmonary gas exchange (S. Deem, M. K. Alberts, M. J. Bishop, A. Bidani, and E. R. Swenson. J. Appl. Physiol. 83: 240–246, 1997), although the factors that contribute to this stability have not been studied in detail. In the present study, 10 Flemish Giant rabbits were anesthetized, paralyzed, and mechanically ventilated at a fixed minute ventilation. Serial hemodilution was performed in five rabbits by simultaneous withdrawal of blood and infusion of an equal volume of 6% hetastarch; five rabbits were followed over a comparable time. Ventilation-perfusion (V˙a/Q˙) relationships were studied by using the multiple inert-gas-elimination technique, and pulmonary blood flow distribution was assessed by using fluorescent microspheres. Expired nitric oxide (NO) was measured by chemiluminescence. Hemodilution resulted in a linear fall in hematocrit over time, from 30 ± 1.6 to 11 ± 1%. Anemia was associated with an increase in arterial [Formula: see text] in comparison with controls ( P < 0.01 between groups). The improvement in O2 exchange was associated with reducedV˙a/Q˙heterogeneity, a reduction in the fractal dimension of pulmonary blood flow ( P = 0.04), and a relative increase in the spatial correlation of pulmonary blood flow ( P = 0.04). Expired NO increased with anemia, whereas it remained stable in control animals ( P < 0.0001 between groups). Anemia results in improved gas exchange in the normal lung as a result of an improvement in overallV˙a/Q˙matching. In turn, this may be a result of favorable changes in pulmonary blood flow distribution, as assessed by the fractal dimension and spatial correlation of blood flow and as a result of increased NO availability.


Respiration ◽  
1978 ◽  
Vol 35 (3) ◽  
pp. 136-147 ◽  
Author(s):  
P. Jebavý ◽  
J. Fabián ◽  
M. Henzlová ◽  
A. Belán

1992 ◽  
Vol 9 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Th. Wanke ◽  
D. Formanek ◽  
M. Auinger ◽  
H. Zwick ◽  
K. Irsigler

Sign in / Sign up

Export Citation Format

Share Document