Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit

Oecologia ◽  
1989 ◽  
Vol 79 (1) ◽  
pp. 38-44 ◽  
Author(s):  
B. F. Clough ◽  
R. G. Sim
2012 ◽  
Vol 39 (5) ◽  
pp. 366 ◽  
Author(s):  
J. G. Pérez-Pérez ◽  
I. C. Dodd ◽  
P. Botía

To determine whether irrigation strategy altered the sensitivity of Citrus leaf gas exchange to soil, plant and atmospheric variables, mature (16-year-old) Fino 49 lemon trees (Citrus limon (L.) Burm. fil. grafted on Citrus macrophylla Wester) were exposed to three irrigation treatments: control (irrigated with 100% of crop potential evapotranspiration, ETc), deficit irrigation (DI) and partial rootzone drying (PRD) treatments,which received 75% ETc during the period of highest evaporative demand and 50% ETc otherwise. Furthermore, to assess the physiological significance of root-to-shoot ABA signalling, the seasonal dynamics of leaf xylem ABA concentration ([X-ABA]leaf) were evaluated over two soil wetting–drying cycles during a 2-week period in summer. Although stomatal conductance (gs) declined with increased leaf-to-air vapour pressure deficit (LAVPD), lower leaf water potential and soil water availability, [X-ABA]leaf was only related to stomatal closure in well irrigated trees under moderate (<2.5 kPa) atmospheric vapour pressure deficit (VPD). Differences in [X-ABA]leaf were not detected between treatments either before or immediately after (<12 h) rewatering the dry side of PRD trees. Leaf water potential was higher in control trees, but decreased similarly in all irrigation treatments as daily LAVPD increased. In contrast, DI and PRD trees showed lower stomatal sensitivity to LAVPD than control trees. Although DI and PRD decreased stomatal conductance and photosynthesis, these treatments did not significantly decrease yield, but PRD increased crop water use efficiency (WUE) by 83% compared with control trees. Thus PRD-induced enhancement of crop WUE in a semiarid environment seems to involve physiological mechanisms other than increased [X-ABA]leaf.


1997 ◽  
Vol 122 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Thomas E. Marler ◽  
Leah E. Willis

Leaf gas exchange characteristics for 16 species of cycad were determined under field conditions in Miami, Fla. Net CO2 assimilation (ACO2) ranged from 4.9 μmol·m-2·s-1 for Lepidozamia peroffskyana Regel to 10.1 μmol·m-2·s-1 for Zamia furfuracea L. fil. in Aiton. Stomatal conductance to H2O (gs) was more variable, ranging from 85 mmol·m-2·s-1 for Cycas seemannii A. Br. to 335 mmol·m-2·s-1 for Encephalartos hildebrandtii A. Br. & Bouche. Transpiration (E) ranged from 1.7 mmol·m-2·s-1 for Cycas chamberlainii W.H. Brown & Keinholz to 4.8 mmol·m-2·s-1 for Encephalartos hildebrandtii. Highly variable E was more controlling of water-use efficiency than the less-variable ACO2. The difference between air and pinnae temperature ranged from 0.3 to 1.6 °C and was inversely related to mean gs among the species. The values within geographic regions representative of the native habitats of the species were highly variable. For example, two of the African species exhibited the highest and lowest values of water-use efficiency in the survey. Leaf gas exchange for the four largest species with arborescent growth form was less than that for the three small species with subterranean or short bulbous growth form. The diurnal variation in leaf gas exchange for Zamia furfuracea exhibited a two-peaked pattern with a distinct midday depression in ACO2 and gs. The ratio of dark respiration to maximum ACO2 for Zamia furfuracea was 0.04. As a group, the values for ACO2 and gs for these cycads ranked at the lower end of the range for all plants species.


Sign in / Sign up

Export Citation Format

Share Document