Analysis of flow through centrifugal pump impellers by finite element method

1989 ◽  
Vol 46 (2) ◽  
pp. 105-126 ◽  
Author(s):  
B. Maiti ◽  
V. Seshadri ◽  
R. C. Malhotra
Author(s):  
P Hernandez ◽  
R Boudet

The objective of this paper is to present a model of the behaviour of dynamical seals and the corresponding numerical results. These seals are used in the mechanism to realize partial sealing when the relative rotating speeds are too high for usual solutions. The studied seals mainly include two discs: one is attached to the shaft and the other to the body, the last one being pushed and the first being attached by springs. During operation, a gaseous film is created between the discs, preventing any contact. The control of the film thickness allows the leakage flow to be controlled. For the behaviour of such mechanisms, an analytical formulation of the problem is firstly presented. Then a geometrical and kinematical model having one degree of freedom is proposed to model the mechanism having two discs in relative rotation, one of which is spirally grooved. A dynamical model associated with the motion of the disc attached to the body has been developed and the mechanics of thin viscous films is used to study the behaviour of the gaseous film at the interface. Utilization of the finite element method in the mechanics of thin viscous films is introduced and a description of the elements used is presented. The influence of the groove's angle and the groove's depth is shown through numerical results concerning leakage mass flow through the mechanism and the loading capacity of the fluid film, as well as the coefficients of stiffness and damping associated with the dynamical model.


Author(s):  
Jianping Yuan ◽  
Yun Liang ◽  
Shouqi Yuan ◽  
Haifang Xiong ◽  
Ji Pei

During the operation of centrifugal pumps, radial hydraulic force is generated due to non-uniform flow within pumps, which is one of the main sources of the vibration of the centrifugal pump volute. In this paper, based on CFD and finite element method, it was calculated and analyzed that the volute vibration of a centrifugal pump caused by radial hydraulic force. The reason of the occurrence of radial force was analyzed, and by simplifying the theoretical formulas the force was calculated. Then the unsteady flow field of a centrifugal pump was simulated and analyzed under different running conditions by CFD method. Based on the simulation results, the radial hydraulic force of the pump was calculated. Finally, vibration response of the pump volute due to the hydraulic radial force was obtained. By analyzing the vibration response datum, vibration parameters were got such as the displacement, velocity and acceleration of vibration. It was obtained that the main vibration frequencies of the pump volute which is caused by unsteady flow are blade frequency and its harmonic frequencies. The pump volute has a minimum vibration under design flow rate condition, and it has a maximum vibration at the 1.5 times design rated flow whilst the vibration frequency is the integral multiple of the blade frequency. This study is helpful to understand the flow-induced vibration of pump volute and to improve the hydraulic design of the centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document