ABSTRACTUropathogenicEscherichia coli(UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. The genome-sequenced prototype UPEC strain CFT073 contains 11 putative AT-encoding genes. In this study, we have performed a detailed molecular characterization of two closely related AT adhesins from CFT073: UpaB (c0426) and UpaC (c0478). PCR screening revealed that theupaBandupaCAT-encoding genes are common inE. coli. TheupaBandupaCgenes were cloned and characterized in a recombinantE. coliK-12 strain background. This revealed that they encode proteins located at the cell surface but possess different functional properties: UpaB mediates adherence to several ECM proteins, while UpaC expression is associated with increased biofilm formation. In CFT073,upaBis expressed whileupaCis transcriptionally repressed by the global regulator H-NS. In competitive colonization experiments employing the mouse UTI model, CFT073 significantly outcompeted itsupaB(but notupaC) isogenic mutant strain in the bladder. This attenuated phenotype was also observed in single-challenge experiments, where deletion of theupaBgene in CFT073 significantly reduced early colonization of the bladder.