Vibrational entropy of polyatomic solids: Metal carbides, metal borides, and alkali halides

1983 ◽  
Vol 4 (2) ◽  
pp. 139-147 ◽  
Author(s):  
G. Grimvall ◽  
J. Ros�n
2021 ◽  
Author(s):  
◽  
Jeffery Lewis Tallon

<p>An experimental and theoretical study of premelting behaviour and mechanisms of melting in the alkali-halides is presented. Theories of melting and previous premelting experiments are first reviewed, then an elastic strain theory of melting is developed, which includes dilatation and shear contributions to the elastic energy and to the vibrational entropy, as well as a communal entropy and an entropy due to the isothermal expansion on melting. By fitting experimental melting parameters, dislocation-like local strains are implicated. The bulk and shear moduli are shown to be continuous with respect to dilatation through the melting expansion and one of the shear moduli vanishes at the dilatation of the melt at the melting temperature. A modified Born instability theory of melting is thus valid. Premelting rises in the apparent specific heat and electrical conductivity within 6 K of the melting point are studied and are shown to occur at the surfaces only. The use of guard rings to eliminate surface conduction is essential at all temperatures above the extrinsic/intrinsic conductivity 'knee', and electrical fringing must be taken into account for typical specimen sizes. For various surface orientations, the rises in surface conductivity occur at lower temperatures the lower the surface packing density, and for deformed specimens, the greater the deformation. The results are interpreted in terms of an atomic-scale surface melting below the melting point, and a consequent rapid rise in vaporisation rate. A dislocation theory of surface melting, melting and the solid-liquid interface is developed which gives good agreement with experimental values for the melting temperatures and the interfacial energies.</p>


2021 ◽  
Author(s):  
◽  
Jeffery Lewis Tallon

<p>An experimental and theoretical study of premelting behaviour and mechanisms of melting in the alkali-halides is presented. Theories of melting and previous premelting experiments are first reviewed, then an elastic strain theory of melting is developed, which includes dilatation and shear contributions to the elastic energy and to the vibrational entropy, as well as a communal entropy and an entropy due to the isothermal expansion on melting. By fitting experimental melting parameters, dislocation-like local strains are implicated. The bulk and shear moduli are shown to be continuous with respect to dilatation through the melting expansion and one of the shear moduli vanishes at the dilatation of the melt at the melting temperature. A modified Born instability theory of melting is thus valid. Premelting rises in the apparent specific heat and electrical conductivity within 6 K of the melting point are studied and are shown to occur at the surfaces only. The use of guard rings to eliminate surface conduction is essential at all temperatures above the extrinsic/intrinsic conductivity 'knee', and electrical fringing must be taken into account for typical specimen sizes. For various surface orientations, the rises in surface conductivity occur at lower temperatures the lower the surface packing density, and for deformed specimens, the greater the deformation. The results are interpreted in terms of an atomic-scale surface melting below the melting point, and a consequent rapid rise in vaporisation rate. A dislocation theory of surface melting, melting and the solid-liquid interface is developed which gives good agreement with experimental values for the melting temperatures and the interfacial energies.</p>


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


1973 ◽  
Vol 34 (C9) ◽  
pp. C9-425-C9-430 ◽  
Author(s):  
L. B. HARRIS ◽  
J. L. SCHLEDERER
Keyword(s):  

1976 ◽  
Vol 37 (C7) ◽  
pp. C7-253-C7-259 ◽  
Author(s):  
C. R.A. CATLOW ◽  
J. CORISH ◽  
K. M. DILLER ◽  
P. W.M. JACOBS ◽  
M. J. NORGETT

1976 ◽  
Vol 37 (C7) ◽  
pp. C7-86-C7-86
Author(s):  
M. T. MONTOJO ◽  
F. JAQUE ◽  
C. SÁNCHEZ
Keyword(s):  

1980 ◽  
Vol 41 (C6) ◽  
pp. C6-68-C6-71 ◽  
Author(s):  
J. Corish ◽  
J. M. Quigley ◽  
C. R. A. Catlow ◽  
P. W.M. Jacobs
Keyword(s):  

1980 ◽  
Vol 41 (C6) ◽  
pp. C6-199-C6-202 ◽  
Author(s):  
W. Kleemann ◽  
E. Grawe ◽  
L. Becker

Sign in / Sign up

Export Citation Format

Share Document