Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans

1980 ◽  
Vol 126 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Kathleen A. Burke ◽  
Kathleen Calder ◽  
June Lascelles
Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


1974 ◽  
Vol 36 (1-2) ◽  
pp. 437-448 ◽  
Author(s):  
B.A. Notton ◽  
E.J. Hewitt

1992 ◽  
Vol 38 (10) ◽  
pp. 1042-1047 ◽  
Author(s):  
Christian Chauret ◽  
Wilfredo L. Barraquio ◽  
Roger Knowles

Nondenaturating disc gel electrophoresis revealed that 99Mo was incorporated into the nitrate reductase of Azospirillum brasilense grown in the absence but not in the presence of tungstate. Under denitrifying conditions, A. brasilense grown in tungsten-free medium steadily accumulated 99Mo for 12 h. In contrast, Paracoccus denitrificans grown under the same conditions ceased uptake after 1 h. However, both bacteria were incapable of accumulating significant amounts of 99Mo in media containing 10 mM tungstate, even though nitrate was reduced by A. brasilense. Aerobically grown A. brasilense cells transported 99Mo more efficiently than anaerobically grown cells. Key words: Azospirillum brasilense, tungsten, molybdenum incorporation, nitrate reduction.


2003 ◽  
Vol 185 (21) ◽  
pp. 6308-6315 ◽  
Author(s):  
Isobel V. Pearson ◽  
M. Dudley Page ◽  
Rob J. M. van Spanning ◽  
Stuart J. Ferguson

ABSTRACT In Paracoccus denitrificans, electrons pass from the membrane-bound cytochrome bc 1 complex to the periplasmic nitrite reductase, cytochrome cd 1. The periplasmic protein cytochrome c 550 has often been implicated in this electron transfer, but its absence, as a consequence of mutation, has previously been shown to result in almost no attenuation in the ability of the nitrite reductase to function in intact cells. Here, the hypothesis that cytochrome c 550 and pseudoazurin are alternative electron carriers from the cytochrome bc 1 complex to the nitrite reductase was tested by construction of mutants of P. denitrificans that are deficient in either pseudoazurin or both pseudoazurin and cytochrome c 550. The latter organism, but not the former (which is almost indistinguishable in this respect from the wild type), grows poorly under anaerobic conditions with nitrate as an added electron acceptor and accumulates nitrite in the medium. Growth under aerobic conditions with either succinate or methanol as the carbon source is not significantly affected in mutants lacking either pseudoazurin or cytochrome c 550 or both these proteins. We concluded that pseudoazurin and cytochrome c 550 are the alternative electron mediator proteins between the cytochrome bc 1 complex and the cytochrome cd 1-type nitrite reductase. We also concluded that expression of pseudoazurin is mainly controlled by the transcriptional activator FnrP.


1997 ◽  
Vol 167 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Heather J. Sears ◽  
Phillip J. Little ◽  
D. J. Richardson ◽  
B. C. Berks ◽  
Stephen Spiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document