Acetylcholinesterase activity in certain glomeruli and Golgi cells of the granular layer of the rat cerebellar cortex

1972 ◽  
Vol 137 (3) ◽  
pp. 317-334 ◽  
Author(s):  
W. Jann Brown ◽  
Sanford L. Palay
1993 ◽  
Vol 69 (1) ◽  
pp. 74-94 ◽  
Author(s):  
P. L. van Kan ◽  
A. R. Gibson ◽  
J. C. Houk

1. The primary goal of this study was to characterize the information about single-joint forelimb movements supplied to intermediate cerebellar cortex by mossy fibers. Discharge of mossy fibers and Golgi cells was studied while monkeys operated six devices that required movements about specific joints. Additional control experiments in anesthetized cats and monkeys established criteria for identification of mossy fibers and Golgi cells. 2. The control experiments demonstrate that mossy fibers can be distinguished from Purkinje and Golgi cells by the waveshapes of their action potentials. Asynaptic activation from the inferior cerebellar peduncle, in combination with histological localization of recording sites in granular layer or subcortical white matter, verified that mossy fibers produce a variety of waveshapes that are characterized by brief initial phases and relatively small amplitudes. The same waveshapes were observed for the mossy fiber recordings from awake monkeys, and many identified mossy fibers had sensory properties similar to those found in the awake animals. From these combined criteria, we conclude that the recordings in the awake animals were from mossy fibers. Golgi cells, recorded exclusively in the granular layer of cerebellar cortex, were characterized by action potentials of longer duration and larger amplitude as compared with mossy fibers, and none were asynaptically activated from the inferior cerebellar peduncle. 3. Units were isolated while the monkeys made free-form and tracking movements. We studied movement-related discharge of 80 mossy fibers and 12 Golgi cells. Mossy fibers showed high modulations during use of at least one of the six manipulanda and had clear preferences for movement about a specific joint, although they often showed consistent but weaker firing during movement about a neighboring joint. Separation of movements by more than one joint produced a large reduction in discharge: shoulder units never fired well to movements of the finger, and finger units never fired well to movement of the shoulder. 4. The tracking task required maintenance of fixed limb positions (a static phase) as well as movements between these positions (a dynamic phase). Of 80 mossy fibers, 18% had purely tonic discharge patterns, 63% were phasic-tonic, and 20% were purely phasic. Discharge patterns were reciprocal (45%), bidirectional (42%), or unidirectional (13%). 5. Eighty percent of the mossy fibers exhibited tonic discharge that was significantly (P < 0.01) correlated with joint angle (r = 0.65 +/- 0.19, mean +/- SD), and about one third had phasic components that were significantly correlated with movement velocity.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Ensor Rafael Palacios ◽  
Conor Houghton ◽  
Paul Chadderton

Sensorimotor coordination is thought to rely on cerebellar-based internal models for state estimation, but the underlying neural mechanisms and specific contribution of the cerebellar components is unknown. A central aspect of any inferential process is the representation of uncertainty or conversely precision characterizing the ensuing estimates. Here, we discuss the possible contribution of inhibition to the encoding of precision of neural representations in the granular layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory granule cells, and their action is critical in shaping information transmission downstream to Purkinje cells. In this review, we equate the ensuing excitation–inhibition balance in the granular layer with the outcome of a precision-weighted inferential process, and highlight the physiological characteristics of Golgi cell inhibition that are consistent with such computations.


2003 ◽  
Vol 2 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Frederik Geurts ◽  
Erik De Schutter ◽  
Stéphane Dieudonné

2021 ◽  
Author(s):  
Chao J. Liu ◽  
William Ammon ◽  
Viviana Siless ◽  
Morgan Fogarty ◽  
Ruopeng Wang ◽  
...  

AbstractThe surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly between the crown of the folium and the depth of the fissure in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.HighlightsWe reconstructed cubic centimeters of human cerebellar samples at micrometer resolution in five subjects.Thickness of the granular layer varies greatly between the crowns and depths of cerebellar fissures.Cross-subject variability is higher in optical property than cortical morphology.Our results suggest homogenous cell and myelin density in the cortical layers of human cerebellum despite the highly convoluted folding patterns.


1973 ◽  
Vol 2 (4) ◽  
pp. 407-428 ◽  
Author(s):  
J. Spačer ◽  
J. Pařízek ◽  
A. R. Lieberman

Sign in / Sign up

Export Citation Format

Share Document