golgi cell
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 0)

2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Ensor Rafael Palacios ◽  
Conor Houghton ◽  
Paul Chadderton

Sensorimotor coordination is thought to rely on cerebellar-based internal models for state estimation, but the underlying neural mechanisms and specific contribution of the cerebellar components is unknown. A central aspect of any inferential process is the representation of uncertainty or conversely precision characterizing the ensuing estimates. Here, we discuss the possible contribution of inhibition to the encoding of precision of neural representations in the granular layer of the cerebellar cortex. Within this layer, Golgi cells influence excitatory granule cells, and their action is critical in shaping information transmission downstream to Purkinje cells. In this review, we equate the ensuing excitation–inhibition balance in the granular layer with the outcome of a precision-weighted inferential process, and highlight the physiological characteristics of Golgi cell inhibition that are consistent with such computations.


2021 ◽  
pp. JN-RM-3013-19
Author(s):  
F. Locatelli ◽  
T. Soda ◽  
I. Montagna ◽  
S. Tritto ◽  
L. Botta ◽  
...  

2019 ◽  
Author(s):  
F. Locatelli ◽  
T. Soda ◽  
I. Montagna ◽  
S. Tritto ◽  
L. Botta ◽  
...  

AbstractThe Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage-dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage-dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.Significance statementThis paper shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with LTD and LTP being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-ype and L-type voltage-gated Ca2+channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.


2019 ◽  
Vol 13 ◽  
Author(s):  
Alice Geminiani ◽  
Claudia Casellato ◽  
Francesca Locatelli ◽  
Francesca Prestori ◽  
Alessandra Pedrocchi ◽  
...  
Keyword(s):  

2018 ◽  
Vol 12 ◽  
Author(s):  
Alice Geminiani ◽  
Claudia Casellato ◽  
Francesca Locatelli ◽  
Francesca Prestori ◽  
Alessandra Pedrocchi ◽  
...  
Keyword(s):  

Author(s):  
Lavdim Kurtaj ◽  
Vjosa Shatri ◽  
Ilir Limani

Processing in the cerebellum is roughly described as feed forward processing of incoming information over three layers of the cerebellar cortex that send intermediate output to deep cerebellar nuclei, the only output from the cerebellum. Beside this main picture there are several feedback routes, mainly not included in models. In this paper we use new model for neuronal circuit of the cerebellar granule cell layer, as collection of idealized granule cell–golgi cell building blocks with capability of generating multi-dimensional receptive fields modulated by separate input coming to lower dendrite tree of Golgi cell. Resulting cerebellar model controller with two-phase learning will acquire multitude of generalization capabilities when used as robot joint controller. This will usually require more than one Purkinje cell per output. Functionality of granule cell-Golgi cell building block was evaluated with simulations using Simulink single compartment spiking neuronal model. Trained averaging cerebellar model controller attains very good tracking results for wide range of unlearned slower and faster trajectories, with additional improvements by relearning at faster trajectories. Inclusion of new dynamical effects to the controller results with linear growth in complexity for inputs targeting lower dendrite tree of Golgi cell, important for control applications in robotics, but not only.


2018 ◽  
Author(s):  
Alice Geminiani ◽  
Claudia Casellato ◽  
Francesca Locatelli ◽  
Francesca Prestori ◽  
Alessandra Pedrocchi ◽  
...  

AbstractBrain neurons exhibit complex electroresponsive properties - including intrinsic subthreshold oscillations and pacemaking, resonance and phase-reset - which are thought to play a critical role in controlling neural network dynamics. Although these properties emerge from detailed representations of molecular-level mechanisms in “realistic” models, they cannot usually be generated by simplified neuronal models (although these may show spike-frequency adaptation and bursting). We report here that this whole set of properties can be generated by theextended generalized leaky integrate-and-fire(E-GLIF) neuron model. E-GLIF derives from the GLIF model family and is therefore mono-compartmental, keeps the limited computational load typical of a linear low-dimensional system, admits analytical solutions and can be tuned through gradient-descent algorithms. Importantly, E-GLIF is designed to maintain a correspondence between model parameters and neuronal membrane mechanisms through a minimum set of equations. In order to test its potential, E-GLIF was used to model a specific neuron showing rich and complex electroresponsiveness, the cerebellar Golgi cell, and was validated against experimental electrophysiological data recorded from Golgi cells in acute cerebellar slices. During simulations, E-GLIF was activated by stimulus patterns, including current steps and synaptic inputs, identical to those used for the experiments. The results demonstrate that E-GLIF can reproduce the whole set of complex neuronal dynamics typical of these neurons - including intensity-frequency curves, spike-frequency adaptation, depolarization-induced and post-inhibitory rebound bursting, spontaneous subthreshold oscillations, resonance and phase-reset, - providing a new effective tool to investigate brain dynamics in large-scale simulations.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Angela K Nietz ◽  
Jada H Vaden ◽  
Luke T Coddington ◽  
Linda Overstreet-Wadiche ◽  
Jacques I Wadiche

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.


Author(s):  
Angela K Nietz ◽  
Jada H Vaden ◽  
Luke T Coddington ◽  
Linda Overstreet-Wadiche ◽  
Jacques I Wadiche

Sign in / Sign up

Export Citation Format

Share Document