cerebellar peduncle
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 93)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 52 (1) ◽  
pp. E12

OBJECTIVE Conventional frame-based stereotaxy through a transfrontal approach (TFA) is the gold standard in brainstem biopsies. Because of the high surgical morbidity and limited impact on therapy, brainstem biopsies are controversial. The introduction of robot-assisted stereotaxy potentially improves the risk-benefit ratio by simplifying a transcerebellar approach (TCA). The aim of this single-center cohort study was to evaluate the risk-benefit ratio of transcerebellar brainstem biopsies performed by 2 different robotic systems. In addition to standard quality indicators, a special focus was set on trajectory selection for reducing surgical morbidity. METHODS This study included 25 pediatric (n = 7) and adult (n = 18) patients who underwent 26 robot-assisted biopsies via a TCA. The diagnostic yield, complication rate, trajectory characteristics (i.e., length, anatomical entry, and target-point location), and skin-to-skin (STS) time were evaluated. Transcerebellar and hypothetical transfrontal trajectories were reconstructed and transferred into a common MR space for further comparison with anatomical atlases. RESULTS Robot-assisted, transcerebellar biopsies demonstrated a high diagnostic yield (96.2%) while exerting no surgical mortality and no permanent morbidity in both pediatric and adult patients. Only 3.8% of cases involved a transient neurological deterioration. Transcerebellar trajectories had a length of 48.4 ± 7.3 mm using a wide stereotactic corridor via crus I or II of the cerebellum and the middle cerebellar peduncle. The mean STS time was 49.5 ± 23.7 minutes and differed significantly between the robotic systems (p = 0.017). The TFA was characterized by longer trajectories (107.4 ± 11.8 mm, p < 0.001) and affected multiple eloquent structures. Transfrontal target points were located significantly more medial (−3.4 ± 7.2 mm, p = 0.042) and anterior (−3.9 ± 8.4 mm, p = 0.048) in comparison with the transcerebellar trajectories. CONCLUSIONS Robot-assisted, transcerebellar stereotaxy can improve the risk-benefit ratio of brainstem biopsies by avoiding the restrictions of a TFA and conventional frame-based stereotaxy. Profound registration and anatomical-functional trajectory selection were essential to reduce mortality and morbidity.


2021 ◽  
pp. 82-91
Author(s):  
Kelly D. Flemming ◽  
Paul W. Brazis

The pons extends from the pontomedullary junction to an imaginary line drawn from the exit of cranial nerve IV. Dorsal to the pons lies the cerebellum, which receives information and projects information back to the brainstem through the inferior, middle, and superior cerebellar peduncles. Important structures at this level include the corticospinal tracts, corticopontocerebellar fibers traveling through the middle cerebellar peduncle, the cerebellum, and cranial nerves V through VIII. Blood supply to the pons is from the basilar artery and its perforating vessels.


2021 ◽  
pp. 92-98
Author(s):  
Kelly D. Flemming ◽  
Paul W. Brazis

The midbrain (or mesencephalon) is the uppermost segment of the brainstem. This chapter reviews the important structures in the midbrain, including cranial nerves III and IV. The midbrain extends from the level of the trochlear nucleus to an imaginary line between the mammillary bodies and the posterior commissure. Important structures at this level include the cerebral peduncles, superior and inferior colliculi, red nucleus, substantia nigra, decussation of the middle cerebellar peduncle, and cranial nerves III and IV.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Takashi Ogawa ◽  
Taku Hatano ◽  
Koji Kamagata ◽  
Christina Andica ◽  
Haruka Takeshige-Amano ◽  
...  

AbstractMultiple system atrophy (MSA) is classified into two main types: parkinsonian and cerebellar ataxia with oligodendrogliopathy. We examined microstructural alterations in the white matter and the substantia nigra pars compacta (SNc) of patients with MSA of parkinsonian type (MSA-P) using multishell diffusion magnetic resonance imaging (dMRI) and myelin sensitive imaging techniques. Age- and sex-matched patients with MSA-P (n = 21, n = 10 first and second cohorts, respectively), Parkinson’s disease patients (n = 19, 17), and healthy controls (n = 20, 24) were enrolled. Magnetization transfer saturation imaging (MT-sat) and dMRI were obtained using 3-T MRI. Measurements obtained from diffusion tensor imaging (DTI), free-water elimination DTI, neurite orientation dispersion and density imaging (NODDI), and MT-sat were compared between groups. Tract-based spatial statistics analysis revealed differences in diffuse white matter alterations in the free-water fractional volume, myelin volume fraction, and intracellular volume fraction between the patients with MSA-P and healthy controls, whereas free-water and MT-sat differences were limited to the middle cerebellar peduncle in comparison with those with Parkinson’s disease. Region-of-interest analysis of white matter and SNc revealed significant differences in the middle and inferior cerebellar peduncle, pontine crossing tract, corticospinal tract, and SNc between the MSA-P and healthy controls and/or Parkinson’s disease patients. Our results shed light on alterations to brain microstructure in MSA.


2021 ◽  
Author(s):  
Avner Meoded ◽  
Marcia Kukreja ◽  
Gunes Orman ◽  
Eugen Boltshauser ◽  
Thierry A.G.M. Huisman

AbstractWe report on the conventional and diffusion tensor imaging (DTI) findings of a 2-year-old child with clinical presentation of Joubert's Syndrome (JS) and brainstem structural abnormalities as depicted by neuroimaging.Conventional magnetic resonance imaging (MRI) showed a “molar tooth” configuration of the brainstem. A band-like formation coursing in an apparent axial plane anterior to the interpeduncular fossa was noted and appeared to partially cover the interpeduncular fossa.DTI maps and three-dimensional (3D) tractography demonstrated a prominent red-encoded white matter bundle anterior to the midbrain. Probable aberrant course of the bilateral corticospinal tracts (CST) was also depicted. Absence of the decussation of the superior cerebellar peduncles and elongated thickened, horizontal superior cerebellar peduncle (SCP) reflecting the molar tooth sign were also shown.Our report and the review of the published cases suggest that DTI and tractography may be very helpful to differentiate between interpeduncular heterotopias and similarly located white matter bundles corroborating the underlying etiology of axonal guidance disorders in the complex group of ciliopathies including JS. Our case represents an important additional puzzle piece to explore the variability of these ciliopathies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thien Huong Nguyen ◽  
Alexis Vaussy ◽  
Violette Le Gaudu ◽  
Jennifer Aboab ◽  
Sophie Espinoza ◽  
...  

Abstract Objective To evaluate the 3D Fast Gray Acquisition T1 Inversion Recovery (FGATIR) sequence for MRI identification of brainstem tracts and nuclei damage in multiple sclerosis (MS) patients. Methods From april to december 2020, 10 healthy volunteers and 50 patients with remitted-relapsing MS (58% female, mean age 36) underwent MR imaging in the Neuro-imaging department of the C.H.N.O. des Quinze-Vingts, Paris, France. MRI was achieved on a 3 T system (MAGNETOM Skyra) using a 64-channel coil. 3D FGATIR sequence was first performed on healthy volunteers to classify macroscopically identifiable brainstem structures. Then, FGATIR was assessed in MS patients to locate brainstem lesions detected with Proton Density/T2w (PD/T2w) sequence. Results In healthy volunteers, FGATIR allowed a precise visualization of tracts and nuclei according to their myelin density. Including FGATIR in MR follow-up of MS patients helped to identify structures frequently involved in the inflammatory process. Most damaged tracts were the superior cerebellar peduncle and the transverse fibers of the pons. Most frequently affected nuclei were the vestibular nuclei, the trigeminal tract, the facial nerve and the solitary tract. Conclusion Combination of FGATIR and PD/T2w sequences opened prospects to define MS elective injury in brainstem tracts and nuclei, with particular lesion features suggesting variations of the inflammatory process within brainstem structures. In a further study, hypersignal quantification and microstructure information should be evaluated using relaxometry and diffusion tractography. Technical improvements would bring novel parameters to train an artificial neural network for accurate automated labeling of MS lesions within the brainstem.


Author(s):  
Caleb Rutledge ◽  
Daniel A. Tonetti ◽  
Kunal P. Raygor ◽  
Adib A. Abla

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Megumi Toko ◽  
Tomohiko Ohshita ◽  
Takashi Kurashige ◽  
Hiroyuki Morino ◽  
Kodai Kume ◽  
...  

Abstract Background Both fragile X-associated tremor/ataxia syndrome (FXTAS) and late-onset neuronal intranuclear inclusion disease (NIID) show CGG/GGC trinucleotide repeat expansions. Differentiating these diseases are difficult because of the similarity in their clinical and radiological features. It is unclear that skin biopsy can distinguish NIID from FXTAS. We performed a skin biopsy in an FXTAS case with cognitive dysfunction and peripheral neuropathy without tremor, which was initially suspected to be NIID. Case presentation The patient underwent neurological assessment and examinations, including laboratory tests, electrophysiologic test, imaging, skin biopsy, and genetic test. A brain MRI showed hyperintensity lesions along the corticomedullary junction on diffusion-weighted imaging (DWI) in addition to middle cerebellar peduncle sign (MCP sign). We suspected NIID from the clinical picture and the radiological findings, and performed a skin biopsy. The skin biopsy specimen showed ubiquitin- and p62-positive intranuclear inclusions, suggesting NIID. However, a genetic analysis for NIID using repeat-primed polymerase chain reaction (RP-PCR) revealed no expansion detected in the Notch 2 N-terminal like C (NOTCH2NLC) gene. We then performed genetic analysis for FXTAS using RP-PCR, which revealed a repeat CGG/GGC expansion in the FMRP translational regulator 1 (FMR1) gene. The number of repeats was 83. We finally diagnosed the patient with FXTAS rather than NIID. Conclusions For the differential diagnosis of FXTAS and NIID, a skin biopsy alone is insufficient; instead, genetic analysis, is essential. Further investigations in additional cases based on genetic analysis are needed to elucidate the clinical and pathological differences between FXTAS and NIID.


Sign in / Sign up

Export Citation Format

Share Document