Granular high-temperature superconductor film in a steady magnetic field

1995 ◽  
Vol 38 (8) ◽  
pp. 844-847
Author(s):  
V. A. Krakovskii ◽  
E. S. Kovalenko

2012 ◽  
Vol 38 (3) ◽  
pp. 211-214 ◽  
Author(s):  
B. A. Belyaev ◽  
I. V. Govorun ◽  
A. A. Leksikov ◽  
A. M. Serzhantov


2007 ◽  
Vol 364-366 ◽  
pp. 739-744 ◽  
Author(s):  
Ke Wang ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
Dong Ming Guo

MgO single crystal is mainly used as substrate for high temperature superconductor film. Surface quality of MgO substrate has significant effect on the function of high temperature superconductor film. MgO single crystal is a typical hard and brittle material, and is easily cleaved along the {100} face, so some defects are always generated on the substrate surface while lapping and polishing, which badly affects the surface quality of the substrate. In this paper, a kind of typical defect, the triangular fracture defect which is on the substrate surface after lapping and polishing, is analyzed in detail. According to the structure characteristics of the MgO single crystal, and based on the dislocation reaction theory, a formation mechanism of the triangular fracture defect in lapping and polishing processes is explored. Through the single grain scratch test in different directions on the polished surface of MgO{100} single crystal substrates, the formation mechanism of triangular fracture defect in lapping and polishing processes is verified. And during the scratch test, the plastic flow of the MgO single crystal material beside the scratch was observed.





2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.



Sign in / Sign up

Export Citation Format

Share Document