Duplex scale formation during high-temperature oxidation of Ni-0.1 wt.% Al alloy

1989 ◽  
Vol 31 (1-2) ◽  
pp. 71-89 ◽  
Author(s):  
D. P. Moon
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Aleksandra Przyłucka ◽  
Agnieszka Cebo-Rudnicka ◽  
Marcin Rywotycki ◽  
Joanna Augustyn-Nadzieja ◽  
Zbigniew Malinowski

2013 ◽  
Vol 690-693 ◽  
pp. 2039-2045
Author(s):  
Zhong Li Zhang ◽  
Qi Shen Wang ◽  
Peng Rao Wei ◽  
Xue Gong

An arc-spraying composite coating system for high-temperature oxidation protection is composed of an inner Fe-Cr-Al alloy layer and an Al-Si alloy outer layer. The high-temperature oxidation behavior of the composite coatings on steel substrate was studied during isothermal exposures in air at 900°C. Experiments show that the coatings on steel substrate are not deteriorated and the substrate is protected well, being exposed to high temperatures up to 900°C. Inter diffusion of alloying elements within the protective coatings occur, while the elements, Cr and Al, are also diffusing to the core of the base metal. As test time proceeds, a large number of chromium oxides are generated in situ within the protective coatings, especially close to the coating/substrate interface. The oxides generated increase the bond strength of the coating to the steel substrate, and together with the surface alumina they provide a long-term effective anti-oxidant protection to steel substrate. The results on titanium sponge production site show that the protective coatings on the reactor have provided an effective protection and prolong the lifetime at least forty percent for the reactors.


2014 ◽  
Vol 45 (12) ◽  
pp. 5362-5370 ◽  
Author(s):  
Giovanni Di Girolamo ◽  
Alida Brentari ◽  
Caterina Blasi ◽  
Luciano Pilloni ◽  
Emanuele Serra

Sign in / Sign up

Export Citation Format

Share Document