steel substrate
Recently Published Documents


TOTAL DOCUMENTS

1989
(FIVE YEARS 521)

H-INDEX

43
(FIVE YEARS 10)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
M. S. Nisha ◽  
S. Mullai Venthan ◽  
P. Senthil Kumar ◽  
Dalbir Singh

Nanostructured carbon dispersed polymer nanocomposites are promising materials for tribological applications. Carbon nanofiber (CNF) and carbon nanotube (CNT) dispersed polyvinylidene fluoride (PVDF) nanocomposite was prepared by chemical synthesis route. Morphology and microstructure of well-dispersed CNF and CNT in PVDF were specified by scanning electron microscope and X-ray diffraction, respectively. Moreover, chemical and functional characteristics were examined by Raman spectroscopy and FTIR investigation. The friction coefficient of PVDF nanocomposite laminated on steel substrate decreased with an increase in the dispersed quantity of CNF and CNT. The friction coefficient of PVDF is approximately 0.27; however, the addition of carbon nanomaterial in PVDF will further decrease the friction coefficient between 0.24 and 0.17. This value was significantly less in CNT dispersed PVDF nanocomposite. This could be explained by easy shearing and rolling action contact interfaces.


2022 ◽  
pp. 136943322110646
Author(s):  
Xinyi HE ◽  
Qingtian SU ◽  
Xu JIANG ◽  
Chong WU

The steel deck with rigid pavement has a lower risk of fatigue failure owing to the enhanced local rigidity. A reliable connection of steel plate and pavement and a convenient construction are critical concerns for this deck type. To seek a new application meeting the aforementioned requirements, this paper proposed a steel deck with adhesively bonded rigid pavement cast by non-reinforced ultra-high performance concrete (UHPC). To study the constructability and flexural properties of this deck type in a bridge deck system, four specimens including two with adhesively bonded connection and two reference ones with shear stud connection were fabricated and experimentally investigated by positive and negative bending tests. In addition, a simplified pretreatment of steel substrate was conducted before the application of epoxy resin to simulate the low quality of on-site construction. Experimental results indicate that the shear strength of the bonding connection with simplified steel pretreatment could decrease to half of that with strict preparation. Bending tests demonstrate that the adhesive bonding provides a more rigid connection between steel and concrete than shear studs did. The bonding failure load was 1.5 times the U-rib yielding load, indicating a high positive bending-carrying capacity of the deck. The adhesive provides better crack resistance than shear studs in negative bending. From a perspective on the bending behavior in the deck system, the adhesive bonding was reliable to obtain high bending capacities to resist actual vehicle loads. Besides, the non-uniform shrinkage of non-reinforced UHPC pavement can cause a 30% reduction of cracking strength.


Author(s):  
M. Czagány ◽  
D. Koncz-Horváth ◽  
P. Baumli ◽  
G. Kaptay

AbstractIn this paper, 50 … 680 nm thick AlN-Al2O3 coatings are deposited by magnetron sputtering on the surface of a steel substrate and a piece of copper is melted on top of the ceramic. Upon heating the ceramic layer is cracked, and the phase inversion of the two top phases from steel/ceramic/copper configuration to the steel/copper/ceramic configuration takes place within 30 s of liquid time of copper. This phase inversion process is accompanied by a Gibbs energy change of about − 1.78 J/m2, due to good wettability of solid deoxidized steel by liquid copper in contrary to poor wettability of the ceramic by the copper. When copper is melted on AlN-Al2O3 coating with its thicknesses smaller than a critical value of about 170 ± 60 nm, liquid copper droplets hanging down into the cracks within the ceramic reach the solid steel surface at the bottom of the cracks, thus the flow of Cu down along the cracks is enabled. However, when copper is melted on AlN-Al2O3 with its thickness larger than the critical value of 170 ± 60 nm, Cu first forms a non-wetting droplet on top of the ceramics, and only after a certain incubation time it starts flowing down the cracks. This incubation time was found to depend linearly on the thickness of the ceramic, as cracks are filled from the bottom upwards by liquid copper via the evaporation–condensation mechanism. By the end of the process, the steel/copper/ceramic configuration is further stabilized by gravity. Graphical abstract


CORROSION ◽  
10.5006/3877 ◽  
2022 ◽  
Author(s):  
Qian Wang ◽  
Liang Zhang ◽  
Junwei Zhang

In this paper, laser cladding technology was used to prepare a Fe-based coating on H13 steel substrate and its corrosion behavior in molten zinc was studied. The results show that laser-cladding Fe-based coating can effectively protect the substrate from the corrosion of molten zinc, which is mainly related to its microstructure. The typical microstructure of the coating is composed of α-(Fe, Cr) solid solution matrix and CrFeB eutectic phases continuously distribute around the matrix. When molten zinc contacts with the surface of the coating, it corrodes the α phase matrix preferentially and CrFeB eutectic phases with better corrosion resistance interweave with each other to form a three-dimensional skeletal structure, which can play the role of diffusion barrier and slow down the diffusion rate of liquid zinc. The corrosion by molten zinc leads to the formation of a transition layer and an outer corrosion layer above the coatings. With the prolongation of the corrosion time, a large number of micro cracks are generated inside the transition layer and fracture gradually occurs under the action of thermal stress. The partial spalling of the transition layer and the corrosion of α phase matrix occur at the same time, making the corrosion depth of the coating increase continuously. However, the dense corrosion layer above the coating and the dispersed boride fragments can still function as a barrier to the inward diffusion of molten zinc.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 228
Author(s):  
Mohamed Gouda ◽  
Mai M. Khalaf ◽  
Kamal Shalabi ◽  
Mohammed A. Al-Omair ◽  
Hany M. Abd El-Lateef

In this work, a Zn–benzenetricarboxylic acid (Zn@H3BTC) organic framework coated with a dispersed layer of chitosan (CH/Zn@H3BTC) was synthesized using a solvothermal approach. The synthesized CH/Zn@H3BTC was characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), thermal gravimetric analysis (TGA), and Brunauer, Emmett, and Teller (BET) surface area. The microscopic observation and the analysis of the BET surface area of CH/Zn@H3BTC nanocomposites indicated that chitosan plays an important role in controlling the surface morphology and surface properties of the Zn@H3BTC. The obtained findings showed that the surface area and particle size diameter were in the range of 80 m2 g−1 and 800 nm, respectively. The corrosion protection characteristics of the CH/Zn@H3BTC composite in comparison to pristine chitosan on duplex steel in 2.0 M H2SO4 medium determined by electrochemical (E vs. time, PDP, and EIS) approaches exhibited that the entire charge transfer resistance of the chitosan- and CH/Zn@H3BTC-composite-protected films on the duplex steel substrate was comparatively large, at 252.4 and 364.8 Ω cm2 with protection capacities of 94.1% and 97.8%, respectively, in comparison to the unprotected metal surface (Rp = 20.6 Ω cm2), indicating the films efficiently protected the metal from corrosion. After dipping the uninhabited and protected systems, the surface topographies of the duplex steel were inspected by FESEM. We found the adsorption of the CH/Zn@H3BTC composite on the metal interface obeys the model of the Langmuir isotherm. The CH/Zn@H3BTC composite revealed outstanding adsorption on the metal interface as established by MD simulations and DFT calculations. Consequently, we found that the designed CH/Zn@H3BTC composite shows potential as an applicant inhibitor for steel protection.


2022 ◽  
Author(s):  
I. Belashova

Abstract. СVD chromium coatings are evaporated on steel substrate from chrome-organic compounds. For crystallization with forming of nano-particles of chromium carbides, subsequent heating (annealing) of tool steel with hybrid coatings is carrying out. Significant increase of micro-hardness of the coating up to 27000 MPa is observed due to the dispersion strengthening. Optimal annealing parameters (temperature and duration) are determined, which maximally strengthen the coatings and increase their adhesion to the steel substrate.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 392
Author(s):  
Beomdeok Seo ◽  
Hideyuki Kanematsu ◽  
Masashi Nakamoto ◽  
Yoshitsugu Miyabayashi ◽  
Toshihiro Tanaka

In this work, a copper coating is developed on a carbon steel substrate by exploiting the superwetting properties of liquid copper. We characterize the surface morphology, chemical composition, roughness, wettability, ability to release a copper ion from surfaces, and antibacterial efficacy (against Escherichia coli and Staphylococcus aureus). The coating shows a dense microstructure and good adhesion, with thicknesses of approximately 20–40 µm. X-ray diffraction (XRD) analysis reveals that the coated surface structure is composed of Cu, Cu2O, and CuO. The surface roughness and contact angle measurements suggest that the copper coating is rougher and more hydrophobic than the substrate. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements reveal a dissolution of copper ions in chloride-containing environments. The antibacterial test shows that the copper coating achieves a 99.99% reduction of E. coli and S. aureus. This study suggests that the characteristics of the copper-coated surface, including the chemical composition, high surface roughness, good wettability, and ability for copper ion release, may result in surfaces with antibacterial properties.


2022 ◽  
Vol 1048 ◽  
pp. 72-79
Author(s):  
Suriaya Hassan ◽  
Abdul Ansari ◽  
Arvind Kumar ◽  
Munna Ram ◽  
Sulaxna Sharma ◽  
...  

In current investigation, the Ni-P-W/ZrO2 electroless nanocomposite coatings are deposited upon mild steel substrate (AISI 1040 grade). The W/ZrO2 nanoparticles (50 to 130 nm range) were incorporated separately into acidic electroless Ni-P matrix as a second phase materials. The as-plated EL Ni-P-W/ZrO2 depositions were also heated at 400 οC in Argon atmosphere for one hour duration and analyzed by SEM/EDAX and XRD physical methods. The Ni-P-W/ZrO2 as-plated coupons revealed nebulous type structures while heated coupons showed crystalline structures in both cases. Furthermore Ni-P-ZrO2 coatings have very less cracks and gaps as compared to Ni-P-W coatings. The corrosion tests result in peracid (0.30 ± 0.02 % active oxygen) solutions point up that corrosivity of peracid ( 500 ppm Cl) is more than peracid (0 ppm Cl) and corrosion resistance of tested coupons varies as Ni-P-ZrO2 (as-plated) > Ni-P-ZrO2 (heated) > Ni-P-W (as-plated) > Ni-P-W (heated) > MS. The utilization of Ni-P-ZrO2 nanocomposite coatings in peracid solutions can be considered a cost effective option on the basis of its better cost/strength ratio in addition to its fair corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document