Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red algaCyanidium caldarium

1979 ◽  
Vol 121 (2) ◽  
pp. 117-120 ◽  
Author(s):  
Carmelo Rigano ◽  
Vittoria Di Martino Rigano ◽  
Vincenza Vona ◽  
Amodio Fuggi
1984 ◽  
Vol 30 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Maria E. Alvarez ◽  
C. M. McCarthy

Mycobacterium avium was previously shown to be dependent upon ammonia or glutamine as a nitrogen source. In an effort to assess the physiology of ammonia assimilation by M. avium, a characterization of its glutamine synthetase was performed. The enzyme from M. avium was purified by streptomycin sulfate treatment, ammonium sulfate precipitation, and affinity chromatography. The enzyme was unusual in that it had a pH optimum of 6.4 and maximum enzyme activity was obtained between 50 and 60 °C as shown by the transferase assay. The glutamine synthetase activity from batch-cultured cells decreased with increasing concentration of ammonium chloride in the range of 0.25–5 μ mol/mL of medium, which demonstrated a response to environmental supply of a nitrogen source. The mycobacterial enzyme was similar to the other bacterial glutamine synthetases in terms of molecular weight and sedimentation coefficient which were 600 000 and 19.5 S, respectively, and enzyme activity was lost by treatment with a glutamate analog, methionine sulfoximine. The isoelectric point was, however, pH 4.5. Treatment of the enzyme with snake venom phosphodiesterase resulted in an increase in specific activity. AMP was released by the phosphodiesterase treatment, thus demonstrating that M. avium glutamine synthetase was regulated by adenylylation modification.


1991 ◽  
Vol 102 (2) ◽  
Author(s):  
Th�ophile Soni ◽  
Claire Wolfrom ◽  
Samia Guerroui ◽  
Nicole Raynaud ◽  
Jos�phine Poggi ◽  
...  

1987 ◽  
Vol 65 (3) ◽  
pp. 432-437 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Johan A. Hellebust

Stichococcus bacillaris Naeg. (Chlorophyceae) grown on a 12 h light: 12 h dark cycle divides synchronously under photoautotrophic conditions and essentially nonsynchronously under mixotrophic conditions. Photoassimilation of carbon under photoautotrophic conditions was followed by a decline in cell carbon content during the dark period, whereas under mixotrophic conditions cell carbon increased throughout the light–dark cycle. The rates of nitrogen assimilation by cultures grown on either nitrate or ammonium declined sharply during the dark, and these declines were most pronounced under photoautotrophic conditions. Photoautotrophic cells synthesized glutamine synthetase and NADPH – glutamate dehydrogenase (GDH) exclusively in the light, whereas in mixotrophic cells about 20% of the total synthesis of these enzymes during one light–dark cycle occurred in the dark. NADH–GDH was synthesized almost continuously over the entire light–dark cycle. In the dark, both under photoautotrophic and mixotrophic conditions, the alga contained more than 50% of glutamine synthetase in an inactive form, which was reactivated in vitro in the presence of mercaptoethanol and in vivo after returning the cultures to the light. The thermal stability of glutamine synthetase activity was less in light-harvested cells than in dark-harvested cells. The inactivation of glutamine synthetase did not occur in cultures growing either heterotrophically in continuous darkness or photoautotrophically in continuous light. This enzyme appears to be under thiol control only in cells grown under alternating light–dark conditions, irrespective of whether this light regime results in synchronous cell division or not.


1968 ◽  
Vol 106 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Liane Reif-Lehrer ◽  
Harold Amos

Hydrocortisone has been found to induce glutamine synthetase activity in chick-embryo retinas in culture. Evidence is presented to show that the hydrocortisone is definitely required for transcription; its requirement for translation has not been ruled out. The possible identity of hydrocortisone with an active component of calf-serum diffusate reported earlier is discussed. The data also indicate that the glutamine synthetase messenger RNA is stable for at least several hours.


Sign in / Sign up

Export Citation Format

Share Document