Herpes simplex virus replication in pheochromocytoma cell line that responds to nerve growth factor

1978 ◽  
Vol 44 (1) ◽  
pp. 9-14 ◽  
Author(s):  
L. I. Pizer ◽  
S. U. Kim ◽  
P. Nystrom ◽  
V. C. Coates
Diabetes ◽  
2004 ◽  
Vol 53 (10) ◽  
pp. 2723-2730 ◽  
Author(s):  
K. Sasaki ◽  
M. B. Chancellor ◽  
W. F. Goins ◽  
M. W. Phelan ◽  
J. C. Glorioso ◽  
...  

2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Kai A. Kropp ◽  
Alberto Domingo López-Muñoz ◽  
Birgit Ritter ◽  
Rocío Martín ◽  
Alberto Rastrojo ◽  
...  

ABSTRACT During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.


1999 ◽  
pp. 253 ◽  
Author(s):  
Michael B. Chancellor ◽  
William F. Goins ◽  
Naoki Yoshimura ◽  
Teruhiko Yokoyama ◽  
Matthew O. Fraser ◽  
...  

1994 ◽  
Vol 232 (7) ◽  
pp. 421-425 ◽  
Author(s):  
Keith A. Laycock ◽  
Robert H. Brady ◽  
Steven F. Lee ◽  
Patricia A. Osborne ◽  
Eugene M. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document