Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines

1983 ◽  
Vol 3 (1) ◽  
pp. 69-80 ◽  
Author(s):  
John W. Daly ◽  
Pamela Butts-Lamb ◽  
William Padgett
Epilepsia ◽  
1984 ◽  
Vol 25 (4) ◽  
pp. 492-498 ◽  
Author(s):  
R. L. Weir ◽  
W. Padgett ◽  
J. W. Daly ◽  
S. M. Anderson

2019 ◽  
Vol 25 (26) ◽  
pp. 2808-2827 ◽  
Author(s):  
Hira Choudhury ◽  
Dinesh K. Chellappan ◽  
Pallav Sengupta ◽  
Manisha Pandey ◽  
Bapi Gorain

The ubiquitous signaling nucleoside molecule, adenosine is found in different cells of the human body to provide its numerous pharmacological role. The associated actions of endogenous adenosine are largely dependent on conformational change of the widely expressed heterodimeric G-protein-coupled A1, A2A, A2B, and A3 adenosine receptors (ARs). These receptors are well conserved on the surface of specific cells, where potent neuromodulatory properties of this bioactive molecule reflected by its easy passage through the rigid blood-brainbarrier, to simultaneously act on the central nervous system (CNS). The minimal concentration of adenosine in body fluids (30–300 nM) is adequate to exert its neuromodulatory action in the CNS, whereas the modulatory effect of adenosine on ARs is the consequence of several neurodegenerative diseases. Modulatory action concerning the activation of such receptors in the CNS could be facilitated towards neuroprotective action against such CNS disorders. Our aim herein is to discuss briefly pathophysiological roles of adenosine on ARs in the modulation of different CNS disorders, which could be focused towards the identification of potential drug targets in recovering accompanying CNS disorders. Researches with active components with AR modulatory action have been extended and already reached to the bedside of the patients through clinical research in the improvement of CNS disorders. Therefore, this review consist of recent findings in literatures concerning the impact of ARs on diverse CNS disease pathways with the possible relevance to neurodegeneration.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mercedes Garcia-Gil ◽  
Marcella Camici ◽  
Simone Allegrini ◽  
Rossana Pesi ◽  
Maria Grazia Tozzi

Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5′-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington’s disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.


Sign in / Sign up

Export Citation Format

Share Document