Effect of the stiffness of the elastic core on the buckling mode and the critical load for glass-reinforced plastic cylindrical shells in axial compression

1974 ◽  
Vol 7 (5) ◽  
pp. 829-836
Author(s):  
V. I. Mikisheva
Author(s):  
Takaya Kobayashi ◽  
Yasuko Mihara

In designing a modern lightweight structure, it is of technical importance to assure its safety against buckling under the applied loading conditions. For this issue, the determination of the critical load in an ideal condition is not sufficient, but it is further required to clarify the postbuckling behavior, that is, the behavior of the structure after passing through the critical load. One of the reasons is to estimate the effect of practically unavoidable imperfections on the critical load, and the second reason is to evaluate the ultimate strength to exploit the load-carrying capacity of the structure. For the buckling problem of circular cylindrical shells under axial compression, a number of experimental and theoretical studies have been made by many researchers. In the case of the very thin shell that exhibits elastic buckling, experimental results show that after the primary buckling, secondary buckling takes place accompanying successive reductions in the number of circumferential waves at every mode shift on systematic (one-by-one) basis. In this paper, we traced this successive buckling of circular cylindrical shells using the latest in general-purpose FEM technology. We carried out our studies with three approaches: the arc-length method (the modified Riks method); the static stabilizing method with the aid of (artificial) damping especially, for the local instability; and the explicit dynamic procedure. The studies accomplished the simulation of successive buckling following unstable paths, and showed agreement with the experimental results.


Author(s):  
Takaya Kobayashi ◽  
Tomotaka Ogasawara

In the design of a modern lightweight structure, it is of technical importance to assure its safety against the buckling under the applied loading conditions. For this issue, the determination of the critical load in an ideal condition is not sufficient, but it is further required to clarify the post-buckling behavior, that is, the behavior of the structure after passing through the critical load. One of the reasons is to estimate the effect of practically unavoidable imperfections on the critical load and the second is to evaluate the ultimate strength to exploit the load-carrying capacity of the structure. For the buckling problem of circular cylindrical shells under axial compression, a number of experimental and theoretical studies have been made by many researchers. In the case of the very thin shell that exhibits elastic buckling, experimental results show that after the primary buckling, secondary buckling takes place accompanying successive reductions in the number of the circumferential waves in each mode change on one-by-one step. In this paper we traced this successive buckling of circular cylindrical shells using some of the general purpose implicit FEM codes currently available. For geometrically nonlinear static problems including buckling and post-buckling, we carried out our studies with two approaches; one is to use the arc length method (the modified Riks method), and the other is stabilizing with the aid of (artificial) damping especially for the local instability. Our analysis procedure consists of the following 2 steps. Before reaching the point exhibiting the comparatively stable state after the primary buckling, the arc length method is applied. After that point, the artificial damping is applied. The results simulate unstable successive buckling and show good agreement with experiments.


2013 ◽  
Vol 351-352 ◽  
pp. 492-496 ◽  
Author(s):  
Li Wan ◽  
Lei Chen

Many elliptical shells are used in structural applications in which the dominant loading condition is axial compression. Due to the fact that the radius varies along the cross-section midline, the buckling behavior is more difficult to identify than those of cylindrical shells. The general concerned aspects in cylindrical shell buckling analyses such as the buckling mode, the pre-buckling deformation and post-buckling deformation are all quite different related to specific elliptical shell geometry. The buckling behavior of elliptical cylindrical shells with uniform thickness has been widely studied by many researchers. However, the thickness around the circumference may change for some specific structural forms, the femoral neck for example, which makes the buckling behavior more complex. It is known that the buckling strength of thin cylindrical shells is quite sensitive to imperfections, so it is natural to explore the imperfection sensitivity of elliptical shells. This paper explores the buckling behavior of imperfect elliptical shells under axial compression. It is hoped that the results will make a useful contribution in this field.


1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


Author(s):  
Jia-Bin Sun ◽  
Xin-Sheng Xu ◽  
Chee-Wah Lim

AbstractIn this paper, the dynamic buckling of an elastic cylindrical shell subjected to an axial impact load is analyzed in Hamiltonian system. By employing a symplectic method, the traditional governing equations are transformed into Hamiltonian canonical equations in dual variables. In this system, the critical load and buckling mode are reduced to solving symplectic eigenvalues and eigensolutions respectively. The result shows that the critical load relates with boundary conditions, thickness of the shell and radial inertia force. And the corresponding buckling modes present some local shapes. Besides, the process of dynamic buckling is related to the stress wave, the critical load and buckling mode depend upon the impacted time. This paper gives analytically and numerically some new rules of the buckling problem, which is useful for designing shell structures.


Sign in / Sign up

Export Citation Format

Share Document