Prediction of long-term creep of low-density polyethylene

1972 ◽  
Vol 4 (1) ◽  
pp. 16-23
Author(s):  
Yu. S. Urzhumtsev ◽  
A. V. Putans ◽  
Z. V. Kalnroze
Author(s):  
Mohamed S. Morsy ◽  
R. Kerry Rowe ◽  
Fady B. Abdelaal

The long-term performance of geomembranes with twelve different resin/antioxidant master-batch combinations, including eight HDPE, three linear low density polyethylene (LLDPE), and one blended polyolefin (BPO) base resins, is investigated. Results are reported for immersion tests in chlorinated water (0.5 ppm) for 35 months at 85oC. The degradation trends show that the choice of resin type played a key role in the longevity of the geomembranes but also that some hindered amine light stabilizer (HALS) packages contributed to better resistance to degradation in chlorinated water. The results show that the specific antioxidant package is more important than the initial oxidative induction time (OIT) in terms of long-term performance. Finally, it is shown that while increased thickness may be beneficial, a more resistant resin or antioxidant/stabilizes package can be more effective than increasing thickness in improving geomembrane performance in chlorinated water. The conclusion regarding the beneficial role of HALS is specific to chlorinated water and generally is not true in other cases of submerged or buried geomembranes.


2013 ◽  
Vol 43 (3) ◽  
pp. 59-66
Author(s):  
R. K. Krastev ◽  
S. Djoumaliisky ◽  
I. Borovanska

Abstract This report presents data on the long-term strength of five composites made of plastic waste. They contain low density polyethylene, high density polyethylene, polypropylene and polystyrene (LDPE, HDPE, PP and PS). Long-term strength is determined experimentally by tensile creep to fracture. The experimentally determined long-term strength is compared to predictions for its probabilistic boundaries. The calculation method of these predictions uses data from short-term experiments. The calculated predictions are true for four compositions which exhibit ductile fracture. The composite containing 50 wt.% PS has the greatest strength (of the tested specimens) and has brittle fracture. Its calculated estimate of long-term strength is not consistent with the experimental one.


Author(s):  
Vyshnavi V. Rao ◽  
Sonashree R. ◽  
Rashmi R. Halbavi

Plastics are the most commonly used polymers for conventional applications. Plastic wastes accumulating the environment are presenting an ever-increasing ecological threat. Low density polyethylene is major cause of long-term environmental pollution. An eco-friendly approach to resolve this ever-growing persistent menace is bioremediation. The diverse metabolic capability of microbes can be effectively exploited for breakdown of plastic wastes. Another approach is to synthesise biodegradable or organic plastics which is soluble in the natural environment. There are several advantages associated with these biodegradable plastics or plastic degrading microbes. They can be composted with organic wastes and returned to enrich the soil. Their use will not only reduce stress and loss of habitat of wild animals caused by dumping of conventional plastics but will also lessen the labor expenses for the removal of plastic wastes in the environment because they degrade naturally. This review describes bioremediation/biodegradation process, production, types of and advantages of bioplastics.


2009 ◽  
Vol 34 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Souad Djellalia ◽  
Nassima Benmahmoud ◽  
Tahar Sadoun

Sign in / Sign up

Export Citation Format

Share Document