Fracture and local instability of thin-walled bodies with notches

1981 ◽  
Vol 17 (8) ◽  
pp. 707-722 ◽  
Author(s):  
A. N. Guz' ◽  
M. Sh. Dyshel' ◽  
G. G. Kuliev ◽  
O. B. Milovanova

1971 ◽  
Vol 22 (4) ◽  
pp. 363-388 ◽  
Author(s):  
J. Rhodes ◽  
J. M. Harvey

SummaryThis paper presents a theoretical analysis of the behaviour of thin-walled lipped channel beams subjected to end moments. In the analysis the beam section is assumed to be composed of a number of flat plates, joined at the edges. The mechanics of local instability of the walls of the beam are examined from a consideration of the strain energy stored in the component plates, and critical moments to cause local buckling are evaluated. The behaviour of the beam after local buckling is studied using a semi-energy method, whereby the stress and deflection systems throughout the section are linked by solving von Kármán’s compatibility equation for the component plates and the stress and deflection magnitudes are found from energy considerations. As collapse of the beam is approached, a simple plasticity analysis is incorporated in the theory in order to evaluate the collapse moment for the beam.The results of the analysis are compared with the findings of an extensive experimental investigation and it is shown that the theory is very accurate in its prescription of the experimental stresses and deflections. Comparison of the theoretical and experimental collapse moments also verifies the validity of the theoretical analysis.



1953 ◽  
Vol 4 (3) ◽  
pp. 245-260 ◽  
Author(s):  
A. H. Chilver

SummaryThe problem discussed is that of the elastic local instability of a uniformly compressed thin-walled strut composed of a number of flat component plates. The strut is essentially “ open ” in cross-sectional form, while reinforcing flanges are attached to the extreme edges. An overall stability equation, based on the small deflection theory of plate bending, is derived from the conditions which must hold at the common and extreme longitudinal edges of the strut.It is shown that the critical compression stress induces a mode of buckling which involves a whole number of sinusoidal half-waves in the longitudinal direction. Furthermore, the number of half-waves is common to all component plates of the strut. The general’ stability equation—a zero determinant of high order—lends itself to expansion in terms of 4th order minors, which may again be expressed in terms of seven basic functions. A knowledge of these functions is sufficient for the solution of any problem, however complex, within the scope of the general analysis.Application of the basic functions to the solution of three different problems yields results which indicate the need for considerable care in the design of thin-walled struts with reinforcing flanges. In struts of this type a longer wavelength of buckling is possible than is commonly associated with local instability problems.





Author(s):  
Natalia Dmitrievna Korsun ◽  
Daria Anatolievna Prostakishina
Keyword(s):  


2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.



Sign in / Sign up

Export Citation Format

Share Document