One-dimensional motion of a two-phase liquid through a tube of variable cross section

1970 ◽  
Vol 6 (7) ◽  
pp. 773-777 ◽  
Author(s):  
A. F. Babitskii
2018 ◽  
Vol 10 (04) ◽  
pp. 1850039 ◽  
Author(s):  
Mohsen Mirzajani ◽  
Naser Khaji ◽  
Muneo Hori

The wave finite element method (WFEM) is developed to simulate the wave propagation in one-dimensional problem of nonhomogeneous linear micropolar rod of variable cross-section. For this purpose, two kinds of waves with fast and slow velocities are detected. For micropolar medium, an additional rotational degree of freedom (DOF) is considered besides the classical elasticity’s DOF. The proposed method is implemented to solve the wave propagation, reflection and transmission of two distinct waves and impact problems in micropolar rods with different layers. Along with new solutions, results of the micropolar wave finite element method (MWFEM) are compared with some numerical and/or analytical solutions available in the literature, which indicate excellent agreements between the results.


2018 ◽  
Vol 3 (12) ◽  
pp. 67-73
Author(s):  
Kanti Pandey

In present paper Re-reflection  effect on  shock –waves in two-phase flows through a tube of variable cross-section is considered when particle  volume fraction appeared as an additional variable .It is concluded that re-reflected effects reduce the cross sectional  area .For two-phase flows when equilibrium is eventually established , presence of particle volume fraction , further reduce  the cross – sectional area. One dimensional area relation for a non – uniform , steady flow ahead of a shock   is obtained and concluded that  all the results are valid for the case   when  direction of the shock motion and the gas flow ahead of the  shock is same  .  In preparation of graphs Mathematica 7 is used .


Sign in / Sign up

Export Citation Format

Share Document