Statistical characteristics of a passive admixture in a homogeneous isotropic turbulence field

1983 ◽  
Vol 23 (4) ◽  
pp. 529-535
Author(s):  
I. V. Nikitina ◽  
A. G. Sazontov
2011 ◽  
Vol 22 (12) ◽  
pp. 1373-1391 ◽  
Author(s):  
WALEED ABDEL-KAREEM

Direct numerical simulation of three-dimensional decaying homogeneous isotropic turbulence with a resolution of 1283 is carried out using the Lattice Boltzmann Method (LBM). The aim of this paper is to investigate the statistical characteristics of the obtained turbulent flow field and the behavior of the vortical structures. Most of the LBM simulations of decaying turbulence were mainly focused on the statistical results of the velocity field, however the characteristics of the coherent vortices and their time evolution are ignored. In this paper, the statistical properties of the velocity field as well as the extraction and tracking processes of individual vortices are considered. Results show that the present simulation could recover important features of turbulence such as isotropy, skewness, energy spectrum and elongated vortical structures. A vortex ring is identified in the flow field which can be considered as a sign for the existence of vortex rings in homogeneous isotropic turbulence. Forward and reverse tracking of individual vortical structures shows that vortex rings can be generated from the interaction and the overlapping of vortex tubes.


2019 ◽  
Vol 4 (10) ◽  
Author(s):  
Mohamad Ibrahim Cheikh ◽  
James Chen ◽  
Mingjun Wei

1994 ◽  
Vol 6 (4) ◽  
pp. 1612-1614 ◽  
Author(s):  
Neal P. Sullivan ◽  
Shankar Mahalingam ◽  
Robert M. Kerr

2016 ◽  
Vol 799 ◽  
pp. 159-199 ◽  
Author(s):  
A. Briard ◽  
T. Gomez ◽  
C. Cambon

The present work aims at developing a spectral model for a passive scalar field and its associated scalar flux in homogeneous anisotropic turbulence. This is achieved using the paradigm of eddy-damped quasi-normal Markovian (EDQNM) closure extended to anisotropic flows. In order to assess the validity of this approach, the model is compared to several detailed direct numerical simulations (DNS) and experiments of shear-driven flows and isotropic turbulence with a mean scalar gradient at moderate Reynolds numbers. This anisotropic modelling is then used to investigate the passive scalar dynamics at very high Reynolds numbers. In the framework of homogeneous isotropic turbulence submitted to a mean scalar gradient, decay and growth exponents for the cospectrum and scalar energies are obtained analytically and assessed numerically thanks to EDQNM closure. With the additional presence of a mean shear, the scaling of the scalar flux and passive scalar spectra in the inertial range are investigated and confirm recent theoretical predictions. Finally, it is found that, in shear-driven flows, the small scales of the scalar second-order moments progressively return to isotropy when the Reynolds number increases.


Sign in / Sign up

Export Citation Format

Share Document