Computational algorithm for a distributed optimal control problem of parabolic type with terminal inequality constraints

1984 ◽  
Vol 43 (3) ◽  
pp. 457-476 ◽  
Author(s):  
Z. S. Wu ◽  
K. L. Teo
Analysis ◽  
2020 ◽  
Vol 40 (3) ◽  
pp. 127-150
Author(s):  
Tania Biswas ◽  
Sheetal Dharmatti ◽  
Manil T. Mohan

AbstractIn this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem.


2016 ◽  
Vol 24 (11) ◽  
pp. 2149-2164 ◽  
Author(s):  
Majid Darehmiraki ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

We use a hybrid local meshless method to solve the distributed optimal control problem of a system governed by parabolic partial differential equations with Caputo fractional time derivatives of order α ∈ (0, 1]. The presented meshless method is based on the linear combination of moving least squares and radial basis functions in the same compact support, this method will change between interpolation and approximation. The aim of this paper is to solve the system of coupled fractional partial differential equations, with necessary and sufficient conditions, for fractional distributed optimal control problems using a combination of moving least squares and radial basis functions. To keep matters simple, the problem has been considered in the one-dimensional case, however the techniques can be employed for both the two- and three-dimensional cases. Several test problems are employed and results of numerical experiments are presented. The obtained results confirm the acceptable accuracy of the proposed method.


1974 ◽  
Vol 11 (2) ◽  
pp. 302-309 ◽  
Author(s):  
N. U. Ahmed ◽  
K. L. Teo

In this paper, the optimal control problem of system described by stochastic McShane differential equations is considered. It is shown that this problem can be reduced to an equivalent optimal control problem of distributed parameter systems of parabolic type with controls appearing in the coefficients of the differential operator. Further, to this reduced problem, necessary conditions for optimality and an existence theorem for optimal controls are given.


2018 ◽  
Vol 41 (8) ◽  
pp. 2280-2292 ◽  
Author(s):  
Xiang Wu ◽  
Jinxing Lin ◽  
Kanjian Zhang ◽  
Ming Cheng

This paper considers an optimal advertising strategy problem. This is an important problem in marketing investment for new products in a free market. The main contributions of this paper are as follows. First, the problem is formulated as an optimal control problem of switched impulsive systems with the state inequality constraints, which is different from the existing nonlinear system models. As the complexity of such constraints and the switching instants are unknown, it is difficult to solve this problem by using conventional optimization techniques. To overcome this difficulty, by applying the penalty function, all the state inequality constraints are first written as non-differentiable penalty terms and imposed into the cost function. Then, the penalty terms are smoothed by using a novel smooth function, leading to a smooth optimal control problem with no state inequality constraints, and an improved gradient-based particle swarm optimization (PSO) algorithm is proposed for solving this problem. Error analysis results show that if the adjustable parameter is sufficiently small, the solution of the smooth optimal control problem is approximately equal to the original problem. Finally, a switched impulsive system for beer sales is established to illustrate the effectiveness of the developed algorithm.


2018 ◽  
Vol 24 (3) ◽  
pp. 1181-1206 ◽  
Author(s):  
Susanne C. Brenner ◽  
Thirupathi Gudi ◽  
Kamana Porwal ◽  
Li-yeng Sung

We design and analyze a Morley finite element method for an elliptic distributed optimal control problem with pointwise state and control constraints on convex polygonal domains. It is based on the formulation of the optimal control problem as a fourth order variational inequality. Numerical results that illustrate the performance of the method are also presented.


Sign in / Sign up

Export Citation Format

Share Document