Numerical experiments with ABS algorithms for linear systems on a parallel machine

1989 ◽  
Vol 60 (3) ◽  
pp. 375-392 ◽  
Author(s):  
M. Bertocchi

2001 ◽  
Vol 90 (1) ◽  
pp. 101-115 ◽  
Author(s):  
Hamid Esmaeili ◽  
Nezam Mahdavi-Amiri ◽  
Emilio Spedicato


2017 ◽  
Vol 7 (4) ◽  
pp. 827-836
Author(s):  
Ze-Jia Xie ◽  
Xiao-Qing Jin ◽  
Zhi Zhao

AbstractSome convergence bounds of the minimal residual (MINRES) method are studied when the method is applied for solving Hermitian indefinite linear systems. The matrices of these linear systems are supposed to have some properties so that their spectra are all clustered around ±1. New convergence bounds depending on the spectrum of the coefficient matrix are presented. Some numerical experiments are shown to demonstrate our theoretical results.



2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ke Zhang ◽  
Chuanqing Gu

The restarted global CMRH method (Gl-CMRH(m)) (Heyouni, 2001) is an attractive method for linear systems with multiple right-hand sides. However, Gl-CMRH(m) may converge slowly or even stagnate due to a limited Krylov subspace. To ameliorate this drawback, a polynomial preconditioned variant of Gl-CMRH(m) is presented. We give a theoretical result for the square case that assures that the number of restarts can be reduced with increasing values of the polynomial degree. Numerical experiments from real applications are used to validate the effectiveness of the proposed method.



2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Saberi Najafi ◽  
S. A. Edalatpanah

We consider a class of fuzzy linear system of equations and demonstrate some of the existing challenges. Furthermore, we explain the efficiency of this model when the coefficient matrix is an H-matrix. Numerical experiments are illustrated to show the applicability of the theoretical analysis.



2015 ◽  
Vol 7 (4) ◽  
pp. 430-440 ◽  
Author(s):  
Xueying Zhang ◽  
Xin An ◽  
C. S. Chen

AbstractThe local RBFs based collocation methods (LRBFCM) is presented to solve two-dimensional incompressible Navier-Stokes equations. In avoiding the ill-conditioned problem, the weight coefficients of linear combination with respect to the function values and its derivatives can be obtained by solving low-order linear systems within local supporting domain. Then, we reformulate local matrix in the global and sparse matrix. The obtained large sparse linear systems can be directly solved instead of using more complicated iterative method. The numerical experiments have shown that the developed LRBFCM is suitable for solving the incompressible Navier-Stokes equations with high accuracy and efficiency.



2017 ◽  
Vol 7 (1) ◽  
pp. 143-155 ◽  
Author(s):  
Jing Wang ◽  
Xue-Ping Guo ◽  
Hong-Xiu Zhong

AbstractPreconditioned modified Hermitian and skew-Hermitian splitting method (PMHSS) is an unconditionally convergent iteration method for solving large sparse complex symmetric systems of linear equations, and uses one parameter α. Adding another parameter β, the generalized PMHSS method (GPMHSS) is essentially a twoparameter iteration method. In order to accelerate the GPMHSS method, using an unexpected way, we propose an accelerated GPMHSS method (AGPMHSS) for large complex symmetric linear systems. Numerical experiments show the numerical behavior of our new method.



2002 ◽  
Vol 12 (06) ◽  
pp. 1395-1402 ◽  
Author(s):  
DAOLIN XU ◽  
ZHIGANG LI

Projective synchronization (PS), in which the state vectors synchronize up to a scaling factor, is usually observable only in partially linear systems. We show that PS could, by means of control, be extended to general classes of chaotic systems with nonpartial linearity. Performance of PS may also be manipulated by controlling the scaling factor to any desired value. In numerical experiments, we illustrate the applications to a Rössler system and a Chua's circuit. The feasibility of the control for high dimensional systems is demonstrated in a hyperchaotic system.



2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Cui-Xia Li ◽  
Yan-Jun Liang ◽  
Shi-Liang Wu

Based on the modified Hermitian and skew-Hermitian splitting (MHSS) and preconditioned MHSS (PMHSS) methods, a generalized preconditioned MHSS (GPMHSS) method for a class of complex symmetric linear systems is presented. Theoretical analysis gives an upper bound for the spectral radius of the iteration matrix. From a practical point of view, we have analyzed and implemented inexact GPMHSS (IGPMHSS) iteration, which employs Krylov subspace methods as its inner processes. Numerical experiments are reported to confirm the efficiency of the proposed methods.



Sign in / Sign up

Export Citation Format

Share Document