Critical loading conditions and stress intensity factors for partial or entire closure of a Griffith crack under thermo-mechanical loading

1983 ◽  
Vol 22 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Kang Y. Lee ◽  
Sunder H. Advani
2020 ◽  
Author(s):  
Ondrej Slávik ◽  
Pavel Hutař ◽  
Michael Berer ◽  
Anja Gosch ◽  
Tomáš Vojtek ◽  
...  

2002 ◽  
Vol 69 (5) ◽  
pp. 580-588 ◽  
Author(s):  
S. Dag ◽  
F. Erdogan

In this study the problem of a surface crack in a semi-infinite elastic graded medium under general loading conditions is considered. It is assumed that first by solving the problem in the absence of a crack it is reduced to a local perturbation problem with arbitrary self-equilibrating crack surface tractions. The local problem is then solved by approximating the normal and shear tractions on the crack surfaces by polynomials and the normalized modes I and II stress intensity factors are given. As an example the results for a graded half-plane loaded by a sliding rigid circular stamp are presented.


Author(s):  
Afshin Khatammanesh ◽  
Khalil Farhangdoost ◽  
Danial Ghahremani-Moghadam

In this research paper, the unstable fracture of 2024-T351 aluminum alloy is studied under a variety of in-plane and out-of-plane mixed-mode loading conditions including pure mode I and pure mode III loadings. A recently proposed loading device with compact tension shear tearing (CTST) specimens is employed for performing fracture experiments. Three-dimensional finite element analyses using the M-integral approach are conducted to derive the stress intensity factors distributions along the crack front for different mixed-mode configurations. The numerical results reveals that the coupled effect of modes II and III can be observed under mixed-modes I/II, I/III and I/II/III loading conditions. Furthermore, the values of stress intensity factors at the midsection of the specimens are used to predict the critical loads based on different mixed-mode criteria. A good consistency is observed between the theoretical predictions of the criteria and the experimental results for different loading conditions.


Sign in / Sign up

Export Citation Format

Share Document