Study of the nature of the long-range effect of the lone pair of the heteroatom on the direct13C-1H spin-spin coupling constants in N-vinyl derivatives of heterocycles by the AM-1 method

Author(s):  
A. V. Afonin ◽  
A. V. Vashchenko ◽  
D. K. Danovich

1972 ◽  
Vol 50 (14) ◽  
pp. 2344-2350 ◽  
Author(s):  
J. B. Rowbotham ◽  
T. Schaefer

Seven methyl derivatives of the 3- and 4-fluoropyridines are synthesized and their p.m.r. spectra are analyzed. The nuclear spin–spin coupling constants are compared with previous results for the four methyl derivatives of 2-fluoropyridine. A model in which the nitrogen atom polarizes primarily the σ electron system of the ring, leaving the π electron contribution to the coupling mechanism relatively unaffected, qualitatively accounts for the large majority of the coupling constants. For example, the coupling over six bonds between methyl protons and a fluorine nucleus, [Formula: see text] is the same whether the fluorine atom or the methyl group is placed ortho to the nitrogen atom and is little different from its value in p-fluorotoluene. The model is consistent with significant σ electron contributions to long-range couplings over four and five bonds from methyl protons to fluorine nuclei or ring protons. Evidence is adduced for resonance structures in which fluorine conjugates with nitrogen or with ring carbon atoms. An earlier suggestion, that hyperconjugation of the methyl group with nitrogen is necessary to the interpretation of the observed couplings, is dropped. Instead, a substantial polarization of the σ electron core near C-2 and -6 is invoked but apparently does not extend appreciably beyond these atoms in the ring.



1978 ◽  
Vol 56 (17) ◽  
pp. 2229-2232 ◽  
Author(s):  
Ted Schaefer ◽  
Werner Danchura ◽  
Walter Niemczura

The long-range spin–spin coupling constants between methylene protons and ring protons are measured in 3,5-dichlorobenzylamine, 3,5-dichlorobenzyldimethylamine, and in 3,5-dichlorobenzyldimethylarsine. The couplings over six bonds are used to derive internal barriers to rotation about the carbon–carbon bond to the phenyl ring. In the above order, they are 0.3 ± 0.3, 0.8 ± 0.2, and 3.0 ± 0.5 kcal/mol. The conformation of lowest energy in the arsine is that in which the CH2—X bond lies in a plane perpendicular to the benzene plane.



2007 ◽  
Vol 3 (4) ◽  
pp. 1284-1294 ◽  
Author(s):  
Oscar E. Taurian ◽  
Rubén H. Contreras ◽  
Dora G. De Kowalewski ◽  
Jorge E. Pérez ◽  
Cláudio F. Tormena


1969 ◽  
Vol 47 (9) ◽  
pp. 1507-1514 ◽  
Author(s):  
T. Schaefer ◽  
S. S. Danyluk ◽  
C. L. Bell

The signs of all proton–proton and proton–fluorine spin–spin coupling constants in 2-fluoro-3-methylpyridine have been determined by double and triple resonance experiments. The signs of the longrange coupling constants, JH,CH3 and JF,CH3 are the same as in fluorotoluene derivatives. Their magnitudes are consistent with the assumption that the nitrogen atom primarily polarizes the σ bonds in the molecule, leaving the π contribution to the long-range coupling relatively unaffected.



1976 ◽  
Vol 54 (14) ◽  
pp. 2228-2230 ◽  
Author(s):  
Ted Schaefer ◽  
J. Brian Rowbotham

The conformational preferences in CCl4 solution at 32 °C of the hydroxyl groups in bromine derivatives of 1,3-dihydroxybenzene are deduced from the long-range spin–spin coupling constants between hydroxyl protons and ring protons over five bonds. Two hydroxyl groups hydrogen bond to the same bromine substituent in 2-bromo-1,3-dihydroxybenzene but prefer to hydrogen bond to different bromine substituents when available, as in 2,4-dibromo-1,3-dihydroxybenzene. When the OH groups can each choose between two ortho bromine atoms, as in 2,4,6-tribromoresorcinol, they apparently do so in a very nearly statistical manner except that they avoid hydrogen bonding to the common bromine atom.



1976 ◽  
Vol 54 (20) ◽  
pp. 3216-3223 ◽  
Author(s):  
William J. E. Parr ◽  
Roderick E. Wasylishen ◽  
Ted Schaefer

The stereospecific spin–spin coupling constants over five bonds between the α-proton in the side chain and the protons in the heterocycle in 2-vinylfuran, in its β-nitro and β-aldehydic derivatives, and in 2-vinylthiophene are used to demonstrate the preponderance of the s-trans conformers in polar and nonpolar solutions. These conclusions are compared with predictions made by molecular orbital theory at the STO-3G, INDO, CNDO/2, and MINDO/3 levels. Long-range coupling constants between the protons in the side chain and protons in the heterocycle are calculated by CNDO/2 and INDO–MO–FPT and are compared with experiment. It is concluded that the five-bond couplings involving the α-proton are most sensitive to conformation and that they are transmitted mainly via a σ electron mechanism. The other long-range coupling constants are discussed in terms of σ and π electron mechanisms. The STO-3G calculations yield barriers to internal rotation of greater than 4.8 kcal/mol.





Sign in / Sign up

Export Citation Format

Share Document