Weak convergence of stochastic point processes

1981 ◽  
Vol 21 (4) ◽  
pp. 297-301 ◽  
Author(s):  
B. Grigelionis ◽  
R. Mikulevičius
1972 ◽  
Vol 12 (3) ◽  
pp. 53-59
Author(s):  
B. Grigelionis

The abstracts (in two languages) can be found in the pdf file of the article. Original author name(s) and title in Russian and Lithuanian: Б. Григелионис. О слабой сходимости сумм многомерных случайных точечных процессов B. Grigelionis. Apie daugiamačių atsitiktinių taškinių procesų sumų silpną konvergenciją


1983 ◽  
Vol 15 (01) ◽  
pp. 39-53 ◽  
Author(s):  
Ed Waymire ◽  
Vijay K. Gupta

The Pólya process is employed to illustrate certain features of the structure of infinitely divisible stochastic point processes in connection with the representation for the probability generating functional introduced by Milne and Westcott in 1972. The Pólya process is used to provide a counterexample to the result of Ammann and Thall which states that the class of stochastic point processes with the Milne and Westcott representation is the class of regular infinitely divisble point processes. So the general representation problem is still unsolved. By carrying the analysis of the Pólya process further it is possible to see the extent to which the general representation is valid. In fact it is shown in the case of the Pólya process that there is a critical value of a parameter above which the representation breaks down. This leads to a proper version of the representation in the case of regular infinitely divisible point processes.


1986 ◽  
Vol 18 (01) ◽  
pp. 66-138 ◽  
Author(s):  
Sidney I. Resnick

A method is reviewed for proving weak convergence in a function-space setting when regular variation is a sufficient condition. Point processes and weak convergence techniques involving continuity arguments play a central role. The method is dimensionless and holds computations to a minimum. Many applications of the methods to processes derived from sums and maxima are given.


1975 ◽  
Vol 12 (S1) ◽  
pp. 239-259 ◽  
Author(s):  
D. Vere-Jones

This paper is an attempt to interpret and extend, in a more statistical setting, techniques developed by D. L. Snyder and others for estimation and filtering for doubly stochastic point processes. The approach is similar to the Kalman-Bucy approach in that the updating algorithms can be derived from a Bayesian argument, and lead ultimately to equations which are similar to those occurring in stochastic approximation theory. In this paper the estimates are derived from a general updating formula valid for any point process. It is shown that almost identical formulae arise from updating the maximum likelihood estimates, and on this basis it is suggested that in practical situations the sequence of estimates will be consistent and asymptotically efficient. Specific algorithms are derived for estimating the parameters in a doubly stochastic process in which the rate alternates between two levels.


1975 ◽  
Vol 7 (1) ◽  
pp. 83-122 ◽  
Author(s):  
Odile Macchi

The structure of the probability space associated with a general point process, when regarded as a counting process, is reviewed using the coincidence formalism. The rest of the paper is devoted to the class of regular point processes for which all coincidence probabilities admit densities. It is shown that their distribution is completely specified by the system of coincidence densities. The specification formalism is stressed for ‘completely’ regular point processes. A construction theorem gives a characterization of the system of coincidence densities of such a process. It permits the study of most models of point processes. New results on the photon process, a particular type of conditioned Poisson process, are derived. New examples are exhibited, including the Gauss-Poisson process and the ‘fermion’ process that is suitable whenever the points are repulsive.


1968 ◽  
Vol 5 (03) ◽  
pp. 648-668
Author(s):  
D. G. Lampard

In this paper we discuss a counter system whose output is a stochastic point process such that the time intervals between pairs of successive events form a first order Markov chain. Such processes may be regarded as next, in order of complexity, in a hierarchy of stochastic point processes, to “renewal” processes, which latter have been studied extensively. The main virtue of the particular system which is studied here is that virtually all its important statistical properties can be obtained in closed form and that it is physically realizable as an electronic device. As such it forms the basis for a laboratory generator whose output may be used for experimental work involving processes of this kind. Such statistical properties as the one and two-dimensional probability densities for the time intervals are considered in both the stationary and nonstationary state and also discussed are corresponding properties of the successive numbers arising in the stores of the counter system. In particular it is shown that the degree of coupling between successive time intervals may be adjusted in practice without altering the one dimensional probability density for the interval lengths. It is pointed out that operation of the counter system may also be regarded as a problem in queueing theory involving one server alternately serving two queues. A generalization of the counter system, whose inputs are normally a pair of statistically independent Poisson processes, to the case where one of the inputs is a renewal process is considered and leads to some interesting functional equations.


1996 ◽  
Vol 33 (2) ◽  
pp. 420-426 ◽  
Author(s):  
J. van den Berg

For (marked) Poisson point processes we give, for increasing events, a new proof of the analog of the BK inequality. In contrast to other proofs, which use weak-convergence arguments, our proof is ‘direct' and requires no extra topological conditions on the events. Apart from some well-known properties of Poisson point processes, the proof is self-contained.


1964 ◽  
Vol 33 (2) ◽  
pp. 273-285 ◽  
Author(s):  
S. K. Srinivasan ◽  
K. S. S. Iyer

Sign in / Sign up

Export Citation Format

Share Document