Effect of longitudinal electric field component on ionizing shock waves in a gas

1971 ◽  
Vol 3 (3) ◽  
pp. 91-91 ◽  
Author(s):  
A. A. Barmin ◽  
A. G. Kulikovskii
Author(s):  
Fabian Maucher ◽  
Stefan Skupin ◽  
Simon A. Gardiner ◽  
Ifan G. Hughes

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8694-8700
Author(s):  
Kousik Chandra ◽  
Samah Al-Harthi ◽  
Sujeesh Sukumaran ◽  
Fatimah Almulhim ◽  
Abdul-Hamid Emwas ◽  
...  

We combined Spin Noise Tuning Optimum (SNTO) and electric field component-optimized shaped tube to boost sensitivity for NMR-based metabolomics.


2010 ◽  
Vol 19 (01) ◽  
pp. 189-201
Author(s):  
H. P. URBACH ◽  
S. F. PEREIRA ◽  
D. J. BROER

The field in the entrance pupil of a high NA lens can be optimized such that, for given incident power, the electric field component in a given direction in the focal point is maximum. If the field component is chosen parallel to the optical axis, the longitudinal component is maximized and it is found that the optimum longitudinal component is narrower than the Airy spot. We discuss how this can be used to obtain higher resolution in photolithography when a resist is used that is sensitive to only the longitudinal component. We describe a proposition for realizing such resist.


1972 ◽  
Vol 7 (1) ◽  
pp. 177-185 ◽  
Author(s):  
B. P. Leonard

Normal ionizing shock waves are considered as a subclass of oblique shocks in which the upstream transverse magnetic field component is zero; i.e. the upstream field is normal to the plane of the shock. Non-trivial (switch-on) normal shocks involve a non-zero downstream transverse field component; magnetically trivial normal shocks are simply gas shocks with an imbedded constant normal magnetic field. As with oblique shocks, switch-on normal ionizing shock waves are plane- polarized, provided the conductivity is a scalar. Ohmic structures are discussed for several values of shock Alfv én number, treating the electric field as a free parameter, as usual. For Alfv én numbers extending from zero to two (for the infinite-Mach-number case), there is always a finite range of E field values. Above two, only the gas shock exists, and this requires a unique electric field value. Because the magnetic field magnitude increases through switch-on shocks, there is no mechanism available for converting magnetic energy into thermal energy, as is the case for oblique or skew shocks. Thus, there is no significant downstream heating above the viscous temperature; and, in some cases, slight downstream cooling may even occur. Expansion shocks are not possible in this geometry. Previous studies are reviewed in the light of structural requirements, and some erroneous results are clarified; in particular, it should be noted that MHD switchon solutions for the pre-ionized case are not imbedded in the family of ionizing switch-on solutions.


1979 ◽  
Vol 6 (4) ◽  
pp. 305-308 ◽  
Author(s):  
F. S. Mozer ◽  
R. B. Torbert ◽  
U. V. Fahleson ◽  
C.-G. Fälthammar ◽  
A. Gonfalone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document