cloud to ground lightning
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 89)

H-INDEX

51
(FIVE YEARS 4)

2021 ◽  
Author(s):  
ALICE LA FATA ◽  
Federico Amato ◽  
Marina Bernardi ◽  
Mirko D'Andrea ◽  
Renato Procopio ◽  
...  

Abstract This paper discusses the use of Random Forest (RF), a popular Machine Learning (ML) algorithm, to perform spatially explicit nowcasting of cloud-to-ground lightning occurrence. An application to the Italian territory and the surrounding seas is presented. Specifically, 1-hour ahead lightning occurrences over the months of August, September and October from 2017 to 2019 have been modelled using a dataset including geo-environmental features. Results obtained with three different spatial resolutions have been compared, for nowcasting both positive and negative strokes. The features’ importance resulting from the best RF models showed how datadriven models are able to identify the relationships between meteorological variables, in agreement with previous physically based knowledge of the phenomenon. The encouraging results obtained in terms of forecasting accuracy support the idea to use ML-based algorithms in early warning procedures for disaster risk management.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1394
Author(s):  
Tian Feng ◽  
Joshua Abbatiello ◽  
Arthur Omran ◽  
Christopher Mehta ◽  
Matthew A. Pasek

Iron silicide minerals (Fe-Si group) are found in terrestrial and solar system samples. These minerals tend to be more common in extraterrestrial rocks such as meteorites, and their existence in terrestrial rocks is limited due to a requirement of extremely reducing conditions to promote their formation. Such extremely reducing conditions can be found in fulgurites, which are glasses formed as cloud-to-ground lightning heats and fuses sand, soil, or rock. The objective of this paper is to review reports of iron silicides in fulgurites, note any similarities between separate fulgurite observations, and to explain the core connection between geological environments wherein these minerals are found. In addition, we also compare iron silicides in fulgurites to those in extraterrestrial samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Wei Kuo ◽  
Steven A. F. Smith ◽  
Chien-Chih Chen ◽  
Ching-Shun Ku ◽  
Ching-Yu Chiang ◽  
...  

AbstractCloud-to-ground lightning causes both high-temperature and high-pressure metamorphism of rocks, forming rock fulgurite. We demonstrate that a range of microstructural features indicative of high temperatures and pressures can form in fulgurites at the surface and in fractures up to several meters below the surface. In comparison to a granite reference sample collected from a borehole at a depth of 138 m, microstructures in both the surface and fracture fulgurite are characterized by: (i) the presence of glass, (ii) a phase transformation in K-feldspar with the presence of exsolution lamellae of plagioclase, and (iii) high residual stresses up to 1.5 GPa. Since this is the first time that fracture-related fulgurite has been described, we also carried out a 1-D numerical model to investigate the processes by which these can form. The model shows that the electric current density in fractures up to 40 m from the landing point can be as high as that on the surface, providing an explanation for the occurrence of fracture-related fulgurites. Our work broadens the near-surface environments in which rock fulgurite has been reported, and provides a detailed description of microstructures that can be compared to those formed during other types of extreme metamorphic events.


Sign in / Sign up

Export Citation Format

Share Document